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ABSTRACT 
 
Sustainable Development Goal 12 “responsible production and consumption’’ has a sub-indicator 12.3.1a 
Food Loss Index, which focuses on countries measuring and reporting on food losses from farm up to but 
excluding the retail level. While there is growing awareness of the issue of food losses at the political level, 
official post-harvest loss data for informing policymaking and reporting on the SDG Indicator is scarce. 
Notably, on-farm loss measurement is complex, and farm and household surveys often face several 
challenges in assessing and measuring these. As a result, food loss data collection can be burdensome for 
countries and their farm surveys 

In this context, approaches that help to improve the farm loss estimates on the one hand, and reduce 
data collection costs on the other hand, can be relevant to countries. This research assesses the possibility 
of using modelling approaches in combination with farm surveys to improve the loss estimates, while 
reducing data collection costs associated with the farm survey. Two approaches to combining survey data 
with modelled estimates were tested for this research: 

1. Identify and test a modelling approach to be used to support sub-sampling of the loss module in 
the farm survey, aiming to improve the loss estimates obtained from the sub-sample, and at the 
same time reducing data collection costs. 
 

2. Identify and test a modelling approach for the estimation of food losses in consecutive year-to-
year survey rounds, with the objective to identify the contribution of structural drivers as a 
potential tool for the indirect estimation of food losses. 
 

The latter approach, combined with further research and development, would potentially make it possible 
to predict food losses based only on identified structural drivers collected regularly in the farm surveys. 

For the first modelling approach to support sub-sampling, the proposed method is based on simpler post-
stratification models using the Classification and Regression Tree (CART) method and the year-to-year 
estimation models are built using generalized structural equation models (GSEMs). The loss models were 
tested on four selected surveys, two food loss pilot surveys conducted in Malawi and Zimbabwe (Global 
Strategy to Improve Agricultural and Rural Statics, GSARS), and the Living Standard Measurement Study-
Integrated Survey on Agriculture (LSMS-ISA) surveys conducted in Malawi and Nigeria. 

For the first modelling approach, the performance of each model is assessed on the different sizes of sub-
samples to improve the sample-based estimates, either by model-based estimates or by model-based 
data imputation. For the CART method, the research indicates that the model-based estimates improve 
the loss estimates of the sub-samples because of the post-stratification error reduction, thereby 
constituting a cost-effective complement to sub-sampling strategies. Model-based imputations should 
only be used on a reduced number of missing observations. The models perform best when the survey 
invests in obtaining more details on-farm loss data and considers some key variables identified as relevant 
for on-farm loss models. When using sub-sampling strategies, it is important to invest in more detailed 
questionnaires. Some considerations are derived from this research on how to design the questionnaires.  
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The use of GSEM is useful to generate food losses estimates that are modelled based on a set of 
determining factors available from the farm survey. This procedure was implemented in two rounds of 
the LSMS-ISA survey in Malawi and Nigeria and showed mixed results. Nevertheless, these models can be 
helpful to understand the contribution of several determinant and driving variables, covering 
socioeconomic farm characteristics, harvesting and post-harvest practices, and environmental factors, as 
well as their changes over time. The models were established using two survey rounds with a percentage 
of post-harvest losses. They are also useful to evaluate total and partial contributions of determinants on 
losses, such as conditional independent effects and possible non-independent effects based on the 
covariance between some of the determinants found. For the estimation of post-harvest losses, GSEM 
can be used as a procedure to estimate the percentage of post-harvest losses for survey rounds that 
collected information of food losses. 
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1.0 Introduction 
1.1 Background and rational 
As part of Sustainable Development Goal Indicator 12.3.1.a and the corresponding Food Loss Index, a 
major discussion has emerged on how to measure and monitor food losses at the country-level, covering 
the food supply chain from production up to, but not including, retail. The latest modelled food loss 
estimates published on the United Nations Statistics Division website1 indicate losses at 13.2 percent, for 
2021. Although losses differ considerably among commodities and countries, farms are one of the most 
critical loss points, as they have direct impacts on farmers’ incomes, food security and natural resources 
(FAO, 2019).  

Generating survey data at the farm level is one way to produce reliable estimates of harvest and post-
harvest losses (PHL), orient decision-making and monitor progress towards reducing food losses. Although 
costly, surveys are necessary to obtain information on food losses that reflect actual reality, as opposed 
to a normative or theoretical measure or a metric that reflects recommended or best practices. On-farm 
loss measurement is complex, and farm and household surveys can encounter several challenges in 
assessing and estimating it, as outlined by Kitinoja et al. (2018), Xue et al. (2017), Delgado, Schuster and 
Torero (2017), Delgado, Schuster and Torero (2020) and Johnson et al. (2018). The multiple factors causing 
food losses, the different timings, operations and activities at which losses may occur, the considerable 
differences in the scale and cause of losses among commodities, typologies of actors, agro-ecological 
factors and management practices make measuring farm losses extremely burdensome. Collecting 
information on losses in farm and household surveys often requires breaking down the farm operations 
and asking the producer to quantify the losses for each operation (GSARS, 2018a). This can be time-
consuming, especially given that these questions need to be asked for each of the farm’s activities and 
crops and, in certain cases, for each plot (for harvest losses, for example). It also adds to the respondents’ 
burden if a relatively long loss module is integrated into a broader farm or household survey, which could, 
therefore, undermine data quality. If losses were to be assessed through physical measurements or other 
methods to get more reliable data (Delgado, Schuster and Torero, 2017), in complement to or instead of 
farmer declarations, the interviewers’ burden would be even more cumbersome, as these operations 
require more time and highly skilled enumerators. Because of these challenges, properly assessing on-
farm losses can result in a relatively high burden on the farm or household surveys and the overall data 
collection effort. 

On the other hand, several initiatives build models to estimate food losses. These models generally 
constitute a cost-effective strategy, and are reproducible and transparent (if variables, model structure 
and input data are described). They make it possible to link practices and production conditions and loss 
percentages, and provide a consistent explanatory framework for losses, which facilitates interpretation. 
Models, however, are often based on a partial representation of reality, for example, by incorporating 
only agronomic and production variables without considering the economic environment. They are often 
based on very partial data, drawn from field experiments, or limited datasets that might not cover all main 
food loss drivers. The consequence of this is that models alone are seldom able to provide representative 
information on losses.  

 
1 See https://unstats.un.org/sdgs/dataportal/database.  

https://unstats.un.org/sdgs/dataportal/database
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As part of the activities included in the 50x2030 Initiative to close the agricultural data gap (hereafter, 
50x2030 Initiative) an optional questionnaire module for collecting data on harvest and post-harvest 
losses on the farm was designed (50x2030 Initiative, 2021). This module, which largely builds on the 
experience learned in the framework of the Global Strategy to Improve Agricultural and Rural Statistics 
(GSARS, 2018a), combines declarative and physical measurements and can be added to or integrated into 
to the other 50x2030 survey instruments, depending on the country’s needs and demand. 

To integrate the optional module on PHL into the modular 50x2030 Initiative survey system and, in 
parallel, optimize fieldwork implementation and data collection costs, sub-sampling of certain variables 
and modules is recommended in the 50x2030 Initiative sampling guidelines (50x2030 Initiative and FAO, 
2021). The assessment of losses can thereby concentrate on a relatively small sub-sample of farmers and 
the freed resources invested into a more precise assessment of losses, either by detailing declarations or 
by using other methods to improve the estimates, such as physical measurements or visual scales. 

On the other hand, the rotation of the different modules, including the food loss module, in the integrated 
farm or household survey is another strategy proposed in the 50x2030 Initiative sampling guidelines 
(50x2030 Initiative and FAO, 2021). Under this approach, countries can optimize data collection costs by 
implementing certain modules only in every second or third survey round.  

In this context, farm loss modelling can constitute an additional instrument to support the sub-sampling 
strategy and the rotation of the loss module.  

1.2 Objectives and scope of the research 
The objective of this research is to come up with relevant modelling approaches to estimate or improve 
the estimation of agricultural losses at the country-level using mostly farm-level information obtained 
from large-scale farm or household surveys. These modelling approaches, used in combination and in 
complement with survey data, may also help to improve the overall cost-efficiency of statistics on farm 
losses by reducing data collection requirements. Apart from the objective to reduce data collection costs, 
the models also help to better identify the causal factors of losses (e.g., addressing labour shortages or 
promoting certain types of storage facility). The two main areas of application in the focus of this research 
are further described, as follows: 

 

1. Identify and test a modelling approach to be used in combination with sub-sampling the loss module 
in the farm survey, aiming to improve the loss estimates obtained from the sub-sample, which, in 
turn, can reduce data collection costs, 

Specifically, the models are assessed to determine if they can improve the loss estimates obtained 
from smaller samples, either by using model-based estimates based on post-stratification or 
model-based estimates with imputation. To do this, the loss model is built on a sub-sample that 
uses a set of explanatory variables collected in the survey. The potential determinants are 
standard indicators that characterize the farm and its production system and may include, among 
other inputs, socioeconomic characteristics, such as age and level of education, harvesting 
methods and number of harvesting days, post-harvest technology used, information on the type 
of storage facility used, storage duration, use of pest control products during storage, and 
information on weather and production conditions. This modelling exercise entails examining 
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whether farm-level post-harvest loss models built on the available set of variables are sufficiently 
reliable to be used for prediction purposes. Afterwards, it is assessed whether modelling 
approaches can add to the results based on sub-sampling, for instance by improving the estimates 
and/or allowing a further reduction of the sub-sample (Affognon et al., 2016). 

2. Identify and test a modelling approach for the estimation of food losses in consecutive year-to 
year survey rounds to identify structural drivers of losses, a potential tool for indirect estimation 
of food loss, to be used to consider predictions based only in identified structural driver 
contributions farm surveys. This too would reduce the costs and frequency of post-harvest 
specific surveys. 

For this purpose, the models are assessed as to whether they can produce sufficiently reliable 
food loss estimates, while relying only on a set of explanatory variables collected in the survey to 
estimate food loss indirectly. By doing this, the survey data of two consecutive survey rounds of 
the Living Standard Measurement Study-Integrated Survey on Agriculture (LSMS-ISA) surveys are 
used for Malawi and Niger. A GSEM loss model is estimated and calibrated using a year-to-year 
approach. This model can be used to estimate losses indirectly for a survey round using only the 
explanatory variables considered. The input data are provided by the variables identified as being 
relevant in the LSMS-ISA surveys.  

 

Apart from the requirement of providing options to reduce data collection costs and improve food loss 
estimates from farm or household surveys, the modelling approaches are intended to be easy to apply, 
making it more feasible for them to be used by national statistics officers after they receive capacity 
building on statistical modelling  

In the rest of the paper, the most relevant results and conclusions are presented. First, a literature review 
was conducted to screen the most relevant determining factors for on-farm losses identified to date and 
the results are presented in chapter 2. In Chapter 3, the final modelling approaches that provide the best 
results are presented on both areas of application, describing the survey data used, the model 
specifications and the results. Only one country example is presented; the other country examples are 
added in the annex. The document closes with recommendations and conclusions. 
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2. Literature review 
2.1 Approach 

As a first step, a literature review was conducted to identify the main determining factors of on-farm 
losses identified. Of special use were journal publications of studies that used regression models on sub-
national food loss surveys to identify the factors that cause losses.  

The main sources used for the literature review were openly available research publications identified in 
Google Scholar, the AGRIS-library2 and the FAO library3. Agricultural crops, especially grains, pulses, roots, 
tubers, fruits and vegetables, were the main commodity groups focused on for the literature review 
Animal products, such as meat, milk and eggs, as well as fish and fish products, were not screened 
specifically, and the first exploratory search did not generate any results on these commodity groups.  

The review focused on on-farm food loss surveys and model approaches used to estimate post-harvest 
on-farm losses. Additionally, studies treating only on-farm storage losses were included in the literature 
review. The research was conducted between November 2020 and January 2021 on articles that were 
published from 1990 onwards. 

Search and selection of the relevant literature  

For the literature review, 126 articles were selected and screened, out of which 62 of them were evaluated 
as relevant publications that provided inputs about determining factors of on-farm losses and food loss 
models. Among the publications that were considered not relevant, several of them were related to food 
waste at the retail and household levels; some authors use the terms food loss and food waste 
interchangeably, and for this reason some articles related to food waste at the retail and consumer levels 
appeared in the search for food loss articles. Other articles not included in the review were on estimating 
food losses at the farm level and analysing causing factors without using a modelling approach. Another 
group of articles screened but discarded analysed different post-harvest technologies and their relevance 
for food losses, but without using food loss data or estimating the impact of these on food loss levels. A 
smaller group of papers was discarded because they focused on food losses at off-farm stages only, 
especially losses at markets places.  

The key words used for the literature review are food losses, food loss determinants, food loss drivers or 
causing factors, food loss regression and food loss models. Articles that provide a food loss literature 
review are used as a first orientation; for instance, Affognon et al. (2016); Agarwal et al. (2021); Kader 
(2005); and Xue et al. (2017) review the food loss literature based on the methods and approaches used, 
modelling approaches being one of them.  

2.2 Characterization of the literature sources 

Commodity groups and commodities 
The distribution by commodities shows that grains and pulses are the most represented commodities 
within the pool of articles found. Staple crops, such as rice, maize and wheat, are the most studied grains, 

 
2 See www.fao.org/agris/agris-and-network. 
3 See www.fao.org/library/resources/fao-library-discovery/en/. 
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while soya and lentils are only included in a few studies. Another group of commodities that are to some 
extent covered in the pool of articles are roots and tubers. Staple crops, such as potato, sweet potato, 
cassava and yams, are more frequently represented in the studies. No studies were found on animal 
products, fish and fish products, which may explain why there is a lack of sufficient food loss data of these 
two commodity groups in general.  

Regions and countries 
Considering the regional distribution, the pool of studies is highly concentrated in the African and Asian 
region, while with only few studies focus on Europe, North America, Oceania and Latin America. In the 
African region, a considerable number of papers on loss modelling approaches at the farm loss focus on 
Nigeria, Ethiopia, Kenya, Ghana and the United Republic Tanzania. In Asia, Bangladesh, India and Nepal 
are the countries most covered on this topic. This result is not surprising given the that the farm level 
represents a more relevant critical food loss point to most countries in the African and Asian region, while 
the research focus in most countries in Europe and North America tends to be at the retail and 
consumption level. 

 

Table 1. Summary of the relevant papers identified during the literature review that use modelling 
approaches with post-harvest loss survey data 

General characteristics of the relevant literature reviewed Number 
of papers 

By commodity groups and commodities  

Grains (rice, wheat, maize, soya, lentil, among others) 21 

Roots and tubers (potato, sweet potato, yam, onion, carrots, among others) 12 

Vegetables (tomato, cabbage, spinach, leeks, among others) 13 

Fruits (banana, mango, among others) 6 

Regions  

     Asia (India, Bangladesh, China, Nepal, Sri Lanka, among others) 15 

      Africa (Kenya, Ghana, Uganda, United Republic of Tanzania, Ethiopia, Nigeria, Zimbabwe, 
Malawi, South Africa, among others) >25 

      Latin America and the Caribbean (Brazil) 1 

      Europe and North America 1 

Years  

     2000− 2009 5 

     2000−2014 7 

     2015−2021 >25 
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Years of publication 
The distribution of the articles by year of publication indicates interest in this area has picked up. As shown 
in table 1, most studies were published from 2015 onward and significantly less studies were published 
during the periods 2000−2009 and 2010−2014. This may indicate a recent rise in interest in this research 
topic and that further studies are likely.  

2.3 Identifying relevant modelling approaches 
2.3.1 General findings 

The literature review shows that several types of food loss models and areas of applications were studied. 
The selection of most relevant approaches for the purpose of this research can be grouped as follows:  

• First group of articles: characterized by models that are microlevel applications at the farm level, 
that make use of survey data to estimate the determinants and explanatory factors of on-farm 
food losses.  

• Second group of articles: focuses on models and approaches that aim to improve on-farm food 
loss estimates from farm survey data. 

Table 2. Summary of the different areas of applications of modelling approaches and food loss survey 
data identified in the literature review 

On-farm food loss drivers and determinants Number 
of papers 

Papers that use regression models to identify food loss drivers within sub-national food loss 
survey 34 

Papers that use regression models to identify food loss drivers/determinants within national 
surveys and complementary data sources 6 

Models to improve on-farm food loss data from surveys Number 
of papers 

Papers that use models to apply different food loss measurement approaches (physical, by 
enquiry) 3 

Papers that use model-based imputation for food loss data gaps in the collected surveys  1 

 
The first two groups of models were considered the most relevant for the purpose of this research. 
Accordingly, for the literature review, these types of studies were sought. This may explain why this is the 
group with largest number of articles. The other group of food loss models were screened to identify 
interesting and complementary elements on the model specifications, although they were not analysed 
with further detail. The following contains a description on these groups of food loss models and the most 
relevant aspects are extracted to feed into the food loss models proposed in the context of this research.  

2.3.2 On-farm food loss models used to estimate food loss drivers 
As already highlighted, the first group of models is the most relevant for the objectives of this research 
and is the focus on identifying relevant studies for the literature review. The common characteristic of 
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this group of models is that they are built on farm loss surveys and apply food loss models for different 
purposes. Most papers conducted a regression analysis with the goal to identify the main explanatory 
factors of food losses. They were conducted in the context of a sub-national food loss survey on a specific 
crop and region. Only a few regression models were built on national survey data of food losses.  

While the main objective of the research is to develop food loss modelling approaches based on national 
survey data, the lack of food loss indicators collected through nationally representative farm or household 
surveys is a limitation. Only three articles were identified, the studies were from the United Republic of 
Tanzania and China.  

In the case of Unite Republic of Tanzania, two of the related published articles made use of the National 
Panel Survey on Households conducted by the National Bureau of Statistics in collaboration with the 
Ministry of Agriculture, Food Security and Cooperatives.4 Both studies focused on the link between 
storage technology adaptation and food losses. Ndiritu and Ruhinduka (2019) examined the influencing 
factors on a binary technology adaptation choice function, food losses are treated only as a conceptual 
objective and the choice of technology will eventually have an impact without estimating a relation 
between the technology and food losses and Ngowi and Selejio (2019) established a post-harvest loss 
model, using a binary variable if the producer/household experienced food losses. The probabilistic choice 
model can be derived and estimated by the binary Logit model, which is used to determine the role of 
each variable in explaining the variation in the dependent variable.  

In the case of China, Qu et al. (2020) makes use of a national survey that was conducted by China 
Agricultural University jointly with the Research Centre for Rural Economy of the Ministry of Agriculture 
and Rural Affairs of China in 2016 (China Agricultura University and Research Centre for Rural Economy, 
2016).5 The survey collected data on food losses from harvesting up to post-harvest operations of grains 
by declaration, as well as other relevant socioeconomic indicators. The model used to estimate influencing 
factors of food losses was able to differentiate traditional farmers from modern farmers, which is an 
additional element in national surveys, as they have a more comprehensive coverage, which includes all 
types of farmers that participate in national production.  

The approaches differ from study-based food loss survey data with respect to the food loss model 
structure that in this case is limited by the information gathered within the national survey. The latter is 
probably less related to concrete food loss factors and more related to general household and production 
characteristics, but it benefits from a broader population and regional coverage.  

Most of the study surveys collected cross-sectional food loss data of single commodities and sub-national 
regions, while on a few of them covered a larger number of crops. The literature review found 
approximately 40 articles. Several countries were represented in between two and six research articles. 
The greatest contribution to this research topic comes from Ethiopia and Nigeria, followed by Bangladesh, 
Kenya, India, Nepal, Uganda and Ghana. Several studies build on each other. For instance, Kumar et al. 
(2006) and Basavaraja, Mahajanashetti and Udagatti (2007) were cited by various articles and represent 

 
4 Access National Bureau of Statistics https://www.nbs.go.tz/index.php/en/census-surveys/poverty-indicators-
statistics/national-panel-survey; Microdata: https://microdata.worldbank.org/index.php/catalog/2862. 
5 CAU and RCRE (2016). Joint Survey on Grain Harvest Loss of Farm Households by Grain Economy Research Group of China 
Agricultural University (CAU) and Rural Fixed Observatory Point Office of Research Center for Rural Economy (RCRE) of Ministry 
of Agriculture and Rural Affairs of China. Ministry of Agriculture and Rural Affairs of China. [Unpublished raw data]. 

https://www.nbs.go.tz/index.php/en/census-surveys/poverty-indicators-statistics/national-panel-survey
https://www.nbs.go.tz/index.php/en/census-surveys/poverty-indicators-statistics/national-panel-survey
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one of the first applications of regression analysis to determine food loss drivers. Some of the mentioned 
studies used the same approach for off-farm stages, but they were not further examined for the purpose 
of this research.  

Estimation strategy: The estimation strategies focus on microlevel approaches used to estimate the 
impact of different explanatory factors on post-harvest food losses at the farm level. The most used 
estimation approach is a multiple linear regression, using a set of explanatory variables to explain the 
dependant variable of food losses. This approach was used, for instance, by Kumar et al. (2006) and 
Basavaraja Mahajanashetti and Udagatti (2007) on grains, roots and tubers in India, Begum, Hossain and 
Papanagiotou (2012) and Khatun et al. (2014) on rice, wheat and tomato in Bangladesh, Arun and Ghimire 
(2019) and Paneru, Paudel and Thapa (2018) on a variety of commodities in Nepal, Adisa et al. (2015) on 
yam, Babalola et al. (2010) on tomato in Nigeria, Tadesse, Bakala and Mariam (2018) on potato in Ethiopia 
and Ambler, Brauw and Godlonton (2018) on cereals in Malawi. 

Some authors opted to use a double and semi logarithmic multiple regression analysis, such as Folayan, 
Babalola and Ilesa (2013) on maize in Ethiopia, Aidoo at al. (2014) on tomato in Ghana, and Huang et al. 
(2017) on grains in China. Ansah and Tetteh (2016) used a fractional logistic regression model because of 
the proportional nature of the dependent variable, which, in this case, is the post-harvest management, 
used as a way of assessing the inverse of food losses. Hossain and Miah (2009) suggested a Cobb-Douglas 
production model to estimate the coefficients of the factors influencing potato storage losses in 
Bangladesh.  

Shee et al. (2019) and Garikai (2014) used an ordered probit model, employing food loss categories that 
place loss percentages into four food loss categories. These categories were built from food loss 
percentage data collected in the respective study survey. Amentae et al. (2016) and Falola et al. (2017) 
used a tobit regression model under which only a binary category of food losses (low and high food losses, 
experience and do not experience losses) was applied. Kikulwe et al. (2018) made use of a tobit censored 
regression model to solve the limitation in the dataset of a significant number of producers who reported 
zero food losses.  

Data: Most of the surveys collected food loss data by declaration together with other socioeconomic 
characteristics of the producer or household, agronomic indicators of the production or post-harvest 
management, and climate factors. Accordingly, the data for the regression models were obtained from 
the same survey with only very few studies that combined the survey data with climate data from other 
sources, such as, for example, Ambler, Brauw and Godlonton (2018). In general, the surveys conducted 
for the food loss studies had a sample size of approximately 100 to 300 households, which depended on 
the target population, regional coverage and available resources.  

Dependent variable: Almost all surveys estimated total post-harvest losses aggregated for all post-harvest 
activities, while only some studies disaggregated losses by each operation or concentrated on one specific 
operation only. Storage losses were one of the operations of special interest, such as Kimenju and De 
Groote (2010) on maize, Falola et al. (2017) on yam and Hossain and Miah (2009) on potato storage. 
Ambler, Brauw and Godlonton (2018) conducted the regression model on aggregated post-harvest losses 
and by each post-harvest operation for maize, soya and groundnuts. The differences between them 
becomes clear on the choice of independent variables, which are more specific if the study and focus is 
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on a single post-harvest activity. Two studies, namely Kikulwe et al. (2018) and Qu et al. (2020), included 
harvest losses complementary to post-harvest losses, on banana in Uganda and on grains in China.  

The most frequently used dependent variable is loss quantities in kilograms, as applied by Aidoo et al. 
(2014) and Alidu, Ali and Aminu (2018) for tomato in Ghana, Tadesse, Bakala and Mariam (2018) for potato 
in Ethiopia and Folayan, Babalola and Ilesa (2013) for maize in Nigeria in Ghana. Four studies considered 
food loss in kilograms per hectare, which is a way to relate the loss quantity to the size of the farm; they 
were Kumar, Basavaraja and Mahajanshetti (2006) and Basavaraja, Mahajanashetti and Udagatti (2007) 
in India and Begum, Hossain and Papanagiotou (2012) and Khatun et al. (2014) in Bangladesh. On the 
other hand, approximately six studies used food loss percentages as the dependant variable, dividing food 
loss quantities by the total quantity produced, including Mebratie et al. (2015) and Amentae et al. (2016) 
in Ethiopia and Paneru, Paudel and Thapa (2018) and Arun and Ghimire (2019) in Nepal. Each of these 
three approaches can have different implications in terms of the relevance of food loss drivers. Food loss 
quantities are likely to be positively related to production volume and factors influenced by the size of the 
farm. Food loss percentages are more commonly used to identify structural food losses usually caused by 
the type of production system, climate and agronomic practices. Food loss percentages tend to diverge 
between the latter to a greater degree than food loss quantities. On a per acre basis, food loss quantities 
could be interpreted similar to food loss percentages, although it does not take into account the 
differences in productivity that are counted in when using food loss percentages. Kikulwe et al. (2018) 
applied a regression analysis on the drivers of food loss quantities and food loss percentages, which 
provides the possibility to compare the changes in the significance of explanatory factors between both 
concepts.  

On the other hand, three studies, Shee et al. (2019), Maziku (2019) and Garikai (2014), used food loss 
categories of minimum, low, medium and/or high food losses. These were either consulted directly as a 
categorial question to the producer or built on the food loss percentages the producer declared. Some 
studies, such as Morris, Kamarulzaman and Morris (2019) and Falola et al. (2017) on food losses in yam 
and plantain in Nigeria, need to be analysed separately as they build the regression analysis on the 
adaptation or use of technologies that are directly linked to higher or lower losses.  

Other approaches: Apart from these estimation strategies, a few studies diverge by using other 
approaches to identify food loss determinants. Meena et al. (2009) used a Cronbach’s alpha coefficient of 
reliability test to identify the factors responsible for post-harvest farm losses (Likert-type scale with a five-
point Likert continuum). Kaminski and Christiansen (2014) applied the effects of the proximate 
determinants in a reduced form and causal analysis using (more) exogenous explanatory variables. 
Dharmathilake et al. (2019) conducted an acreage response analysis to identify relationships between the 
scale of farming operation and the post-harvest losses.  

2.3.3 On-farm food loss models used to improve food loss survey data 
Only a few studies targeted improving food loss estimates from survey data by using modelling 
approaches. A few studies combined different data collection methods to improve overall food loss 
estimates. This includes surveys that collected food loss data using different methods, such as 
declarations, physical measurement and visual scales, used models to identify biases or to obtain better 
food loss data through statistical pooling. Another application to improve survey data of food losses filled 
food loss data gaps or non-responses in the farm/household survey by using a food loss imputation model. 
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Model approaches to improve on-farm food loss data from surveys using different data collection 
methods:  

As stated in the guidelines to measure harvest and post-harvest losses of cereals and pulses (GSARS, 
2018b), food losses can be collected by farmers´ declarations or by actual/physical measurements. 
Delgado, Schuster and Torero (2017) and Delgado, Schuster and Torero (2020) analysed the differences 
and advantages and disadvantages among them and other approaches through a pairwise comparison of 
means. Jha et al. (2015) conducted national food loss surveys in India on several commodities by collecting 
both declared and physically measured food losses to improve overall food loss estimates by statistical 
pooling. No study was found to have applied a modelling approach to estimate the bias of one food loss 
data collection method against the other as suggested in chapter 1 as being one area to be covered by 
this research 

Model approaches to improve on-farm food loss data from surveys by filling data gaps in surveys: 

Apart from using combined methods of data collection to improve food loss estimates, data gaps and non-
responses can be a problem in collecting food loss survey data for farm and household surveys. Hengsdijk 
and De Boer (2017) used a modelling approach to impute missing data of food losses within a national 
household survey. This represents one way to apply this research. The study used a random forest 
approach for the imputation exercise. 

2.3.4 Identifying explanatory factors of on-farm food losses 
One key result obtained from the literature review is a synthesis of the most relevant explanatory factors 
regarding on-farm losses. Based on the studies screened, an assessment matrix of the commonly used 
and relevant food loss drivers was generated. The results are presented in this section. Table 3 shows a 
general summary on the main thematic areas covered by most food loss models found in the literature 
review, which include socioeconomic characteristics of the household or producer, production 
characteristics, post-harvest activities, and weather and climate factors. Indicators on the post-harvest 
activities appear to be the most relevant group, while the factors on the production activity, weather and 
socioeconomic characteristics show mixed results.  

Table 3. Groups of the main explanatory factors of food losses by the identified papers in the 
literature review 

Categories of explanatory 
factors 

Example indicators ≈Relevance 

Socioeconomic characteristics 
(≈21 different indicators) 

Age, education, gender  Less significant 

Income, credit access Mixed results 

Communication, geographical area Mixed results 

Family size Significant 

Characteristics of the 
agricultural activity 
(≈33 different indicators) 

Size of the farm, production quantity Significant with mixed 
results 

Farming experience, cooperation Mixed results 
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Input, labour Less significant 

Timing of the harvest Significant 

Post-harvest activities 
(≈20 different indicators) 

Market connection Significant 

On-farm storage Significant 

Packaging, transportation, threshing Mixed results 

Weather and climate 
(≈10 different indicators) 

Weather conditions at harvesting Significant 

Agro-ecological conditions/ zones Mixed results 

HH/producer uses weather information Less significant 

 

2.3.4.1 Socioeconomic characteristics 
Age and education: Age and education are the most used indicators to assess the relevance of the 
socioeconomic factors influencing food losses. To some extent, these indicators are used because they 
are mostly available in household and farm surveys. Nevertheless, the relevance of these indicators is 
limited and they are significant in most studies, independently of the region and commodity group. Arun 
and Ghimire (2019) in Nepal and Ansah and Tetteh (2016) on yam in Ghana, which found relevance for 
both indicators, are the only regressions that identified a relevance of age and educational level at the 5 
and 10 percent significance level. The effect of education on losses was overly identified as being negative, 
which is in line with the hypothesis that more years of education may contribute to lower losses.  

The age level of the producer, household head or respondent show mixed effects, some being positive 
and others being negative. To some extent, it is argued that older producers count with more years of 
experience in farming and post-harvest management. Because of that, food loss may be negatively 
correlated with age. On the other hand, younger producers may be adopting improved farming methods, 
which could be the reason why age is influencing food losses positively. The age level can also be related 
to the size of the farm and type of production system, as small scale subsistence farmers tend to be older 
than commercial farmers.  

Experience in farming: A related indicator to the level of education is the years of experience in farming. 
The relevance of this indicator in the screened studies results is significant in all of them, which is a more 
stable correlation compared to the years of education. Although higher experience in farming is expected 
to have a negative impact on the level of food losses, with reduced losses when the respondent has more 
years of experience, the direction of the effect is mixed. The number of studies found to have either 
positive or negative impacts are equal but the negative correlation is generally confirmed at higher 
significance levels. The explication for the mixed results of the sign can be compared to those given for 
the age of the respondent, with older farmers more often being small scale subsistence farmers.  

Gender: The gender of the producer, household head or respondent is another explanatory factor used 
in several regression analysis. In all of the studies, the gender on post-harvest levels was found to have a 
significant influence, varying at the 1 percent and 5 percent significance levels. The sign of the effect shows 
mixed results and the explanations of the relevance of the gender on the loss level are not 
straightforward. To some extent, gender can be related to general characteristics of the production 
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system, with women being excluded from the access to production inputs, technology and knowledge, 
which would assume that losses are positively correlated. On the other hand, it is argued, that women 
have more knowledge on post-harvest handling and are better able to conserve the food and reduce 
losses.  

Size of the family: The most significant indicator among the socioeconomic characteristics is the size of 
the family based on number of family members. The reason for including this indicator is the hypothesis 
that larger households have more readily available and cheaper sources of labour to manage post-harvest 
losses effectively compared to smaller-sized households. Accordingly, for most studies, a negative 
correlation between the size of the family and food losses is expected. This hypothesis is confirmed by 
half of the studies, while the other half identified a positive correlation, which could be that the larger the 
household, the more diverse the responsibility for ensuring proper handling of crop production; 
alternatively, it could be that households have had to acquire more diverse plots to feed the household, 
and, therefore, there is more chance of loss. Two studies found no significance of the size of the family on 
post-harvest losses.  

Income level and from farming: The studies screened show a significant impact of income and credit on 
the level of food losses of the studies screened. Compared to the other socioeconomic indicators, the 
type of indicator on income and credit varies, for instance, average annual income of the respondents, 
total household income, percentage of income coming from farming or agriculture as a primary 
occupation.  

The income level is shown to be less significant to explain food loss levels. The literature suggests that 
wealthier households are better equipped to avoid crop loss, either because they have more resources or 
because they have access to better information. This is not confirmed by all studies, which either show 
no significance of positive correlation. No significance can be the result of a relatively homogenous 
sampling population, especially considering that most studies focus specifically on small-scale farmers and 
sub-national regions. A positive correlation can be argued in a similar way: The focus on small-scale 
farmers can imply that farmers, who produce more and generate higher incomes, need to handle larger 
quantities of crops in post-harvest operations, which can be the reason behind higher losses compared to 
subsistence farmers.  

The percentage of income from farming appears to be significant and positively affects food losses, while 
the dummy variables on the households that have agriculture as the primary occupation is significant, but 
have mixed signs of effect. Agriculture as a primary occupation can indicate that households engage in 
more specialized farming, which can mean that more knowledge and production means are available.  

Access to credit: Having access to credit is used by only two studies, and in both studies, there is a 
significant relevance. The sign of the effect is negative, which confirms the hypothesis that households 
that achieved access to credit are more formalized and organized and have access to production means 
and knowledge in harvesting and post-harvest management. 

2.3.4.2 Characteristics of the agricultural activity 
Size of the farm: Regarding the size of the farm, the most used indicators are the cropping area (ha), area 
of land cultivated (ha) or the area allocated for the crop being studied. On the one hand, it is argued that 
the greater the output a farmer results in greater probability of experiencing post-harvest losses. Then, 
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the sign of the coefficient is expected to be positive. On the other hand, the size of the farm can be 
positively related to the level of required investment, production and whether post-harvest management 
capacities are in place, which would imply a negative correlation between the size of the farm and food 
losses. With only a few exemptions, the studies reviewed included the farm size as explanatory variable, 
with mixed results. Several studies found no significance of the indicator for food losses, while others 
identified high significance at the 1 percent level. No pattern can be observed, independently of the 
country or region, the crop or commodity group, or the type of dependent variable (food loss quantities 
or food loss percentages) used in the regression analysis. 

Quantity produced: The hypothesis on the effect of the produced quantity on the level of food losses is 
similar to the size of the farm. On the one hand, related to large scale production, farmers are expected 
to make greater investments and generate larger incomes and as a result have the capacity to adopt 
effective post-harvest management techniques. On the other hand, an increase in quantity harvested 
results in more complex post-harvest handling and an increase in losses when harvest and post-harvest 
management is not effective in place. The studies show that the impact of the quantity produced on food 
loss levels is highly significant, with most studies showing a significance at the 1 percent level. The sign of 
the effect is confirmed to be either negative or positive.  

Special care is needed when interpreting the results of this explanatory factor, which differ considerably 
if the dependant variable is defined as food loss quantity compared to food loss percentage. Food loss 
quantities are likely to be positively correlated with the production level, while food loss percentages are 
observed to have a negative correlation with the size of the farm. Assuming food losses are structurally 
caused, food loss percentages are net production, with percentage losses observed to be higher for small 
scale farmers and lower for large scale or commercial farmers, while food loss quantities fluctuate with 
the production volume. It is, therefore, more likely that food loss quantities increase in line with increasing 
production output.  

Input and technology: Within this group of indicators, different approaches can be taken to analyse the 
relevance of production technologies on the level of food losses. Some examples are the area under 
irrigation, indicators on input usage, including cost of improved seed, fertilizer, chemicals, labour, varieties 
used or having access to the extension service, number of extension visits per year or access to extension 
contact. The significance of these indicators is shown to be mixed, but they tend to be less relevant when 
explaining food loss levels. Homogeneity of the households in terms of input and technology can be one 
explanation for identifying an impact. Another reason may be that losses are more related to post-harvest 
operations and probably less to specific production characteristics. The mostly widely used indicator is 
the variety of seeds used, which shows significance in some of studies in which the indicator was 
employed. 

Labour: Although less frequently used, some studies included indicators on the agricultural labour input. 
A major aspect considered is if the labour availability during harvesting was adequate, which is not 
significant in India, but is significant in Bangladesh with a negative effect. The type of labour used for 
harvesting, either family labour or hired labour, is another explanatory factor. In the labour-intensive 
harvesting and post-harvest operations of fruits and vegetables, additional indicators were included. For 
instance, the number of active labour force, pre harvest working days (man days) and harvest working 
days (man days). This indicator was found not to be statistically significant.  
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Cooperation and organization: A few studies included membership in producer cooperation and farmer 
organizations. The indicators vary from membership in producer organizations and farmer-based 
organizations and, membership in cooperative to purchase inputs jointly and marketing co-operatives for 
selling outputs This type of indicator is more commonly applied in models covering food losses in fruits 
and vegetable. The results on the significance of the membership on food losses are mixed and tend to 
be more relevant when the dependant variable used are food loss quantities instead of food loss 
percentages. The overall sign of the effect is negative, which is in line with the expected impact assuming 
that the membership in a producer organization contributes towards more efficient marketing of the 
fruits and vegetables and thus lower post-harvest losses.  

Time of harvesting: Some studies used the time of harvesting as an explanatory factor for fruits and 
vegetable food losses. One of the indicators is the time of harvest after maturity (days) or the age of the 
fruit at harvest (months). Others used the decision to harvest if the fruit or vegetable harvested was 
mature or if the criteria to harvest is that the fruit is mature. Alternatively, a threshold was established to 
identify early harvest. The time of harvesting had a high significance for food losses in all studies in which 
the indicator was used. The sign of the effect is positive overall, with higher losses related to the produce 
that was harvested in a more mature state.  

2.3.4.3 Post-harvest activities 
The difficulties farmers and households encounter while engaging in post-harvest activities are key causes 
of food losses, making related explanatory factors are expected to be relevant. This differs from the 
previous factors on the socioeconomic characteristics and production activities, which are a proxy for the 
overall production structure and capacity for post-harvest management.  

On-farm storage of grains, roots and tubers: Storage is a relevant post-harvest operation for on-farm food 
losses, especially for grains, roots and tubers. The indicators used as explanatory factors for storage are 
the existence of a storage facility, storage period in months or days of storage, the storage structure or 
type of storage or a storage variable if the storage facility was adequate. Similar to the literature that 
broadly confirms the importance of the storage facilities for post-harvest losses food losses, the type of 
storage shows to have a significant impact, but contrary to the expected sign of the impact, the studies 
indicate a positive effect of the access to storage facilities or adequate storage facilities on the level of 
food losses, although some studies confirm the negative relationship.  

The period or length of storing the crop is expected to be relevant, but the results are mostly not 
significant. When significant, the sign of the effect is positive, with higher food losses related to a higher 
storage period. On the other hand, it is also argued that crops stored for a long time, better management 
techniques must be applied to prolong the shelf life of the produce. 

On-farm packaging and storage of fruits and vegetables: Post-harvest on-farm packaging can be a relevant 
explanatory factor of fruits and vegetable food losses. The indicator used in the two studies are whether 
packaging is conducted or whether the packaging is suitable and worthwhile. When the packaging is 
suitable, the explanatory factor is significant with a negative effect on the level of food losses. The results 
associated with the indicator that assesses food losses shows that packaging is not significant.  

On- and off-farm transportation: Transportation may be a relevant indicator, although it is more critical 
for food losses at off-farm stages instead of on-farm stages. The studies that assessed the impact the 
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adequacy of transportation facilities tended to find no significance on grains, roots and tubers. A different 
result may be suggested for fruits and vegetables, but the indicator was not included in the screened 
studies. The ownership of transport was another indicator used that resulted in not being significant. One 
study conducted in the United Republic of Tanzania used the number of livestock owned by the household 
as a means of transportation to move maize to markets, with livestock being linked to lower losses 
(Maziku, 2019). The studies that include off-farm stages could provide more insights into the effect of 
transportation on retail or wholesale losses. 

Market connection and sales: Several studies included explanatory factors to examine the influence of 
market linkages on the level of post-harvest food losses. The most frequently used indicator is the distance 
to markets, which can be related to transportation losses or a lack of access to markets. Losses can then 
occur at the farm level if access to markets is hampered, or off-farm during transportation due to longer 
distances. The time to the nearest market has a similar interpretation. The overall results show that the 
indicator is significant for post-harvest food losses, including grains, roots, fruits and vegetables,, and are 
independent of the type of dependent variable used.  

Other indicators, the area under commercial crops, the frequency of sales and the percentage of 
production used for own consumption, or the years of experience in markets are factors that can be used 
as proxies for the farmer´s degree of market integration. Only the area under commercial crops appeared 
to be significant for the quantity of food losses, showing a positive effect, which could be linked implicitly 
to the size of the farm and the quantity produced.  

The sale price or current prices are explanatory factors that can indicate the type of market the product 
is sold, imply differences in the quality of the product or refer to different market situations (supply or 
demand excess). The two studies that used the indicator identified a significance at the 10 percent level 
with a negative sign. Food losses are, therefore, lower when sale prices are higher, assuming that farmers 
have a greater possibility to sell their production when prices are high (lower supply or higher demand).  

2.3.4.4 Weather and climate 
In terms of weather and climate conditions, general literature on food loss confirms the different 
implications they can have on food losses during harvesting and during post-harvest operations. The 
impacts on the quality of the produce, certain climate conditions during harvesting that can contribute to 
damages during harvesting or that affect the crop in post-harvest operations, for instance the moisture 
level of gains, and general regional agroecological conditions could affect food losses.  

Weather conditions prior to and at harvesting: One group of explanatory factors aimed at identifying the 
weather at harvesting, with indicators requesting if the weather during harvesting was favourable or if 
rainfall/precipitation occurred during harvest and post-harvest. Alternatively, the month of harvest is 
used as an indicator to relate food losses to climate conditions. The results show that this indicator is 
overly significant and the consensus is on the positive sign of the effect, indicating that rain during 
harvesting contributes to higher food loss levels.  

Another group of indicators reviews general weather conditions during the production period, using 
either a binary indicator on the weather condition (good or bad) or precipitation at preharvest, with 
rainfall prior to harvest indicative of overall production conditions and as a proxy for humidity patterns. 
Both indicators are overly significant. In one study, preharvest precipitation has a negative effect on 
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losses. More rain during the growing season should be indicative of a better-quality harvest that is less 
likely to be damaged or completely lost. The positive sign is confirmed by the second study, with good 
weather conditions contributing to lower losses.  

Agro-ecological conditions: The overall agro-ecological conditions can also be proxied with agro-ecological 
zones that may have been established. In Nepal, altitude was used, while other studies chose a more 
general approach with a district dummy. This latter can include other regional effects apart from agro-
ecological conditions, as there are socioeconomic differences among regions. Each of the explanatory 
factors was found to be significant. A positive effect between altitude and losses was observed, with 
higher altitude causing higher losses and belonging to a certain district that relates to more favourable 
agro-ecological conditions being associated with lower losses.  

Use of weather information: The use of weather information or past weather experiences was found to 
be another explanatory factor. The result is overly significant, although mixed with commodities under 
which no significance was identified or a significance was only at the 10 percent level only. The use of 
weather information shows a negative effect, indicating that losses are lower if producers use climate 
data for decision-making. The use of past weather experience is positively related to food losses, which 
may indicate that these producers are more commonly affected by climate.  

2.3.5. Conclusion of the literature review 
In conclusion, the literature review cast out a considerable number of studies that examined the driving 
or determining factors of harvest and post-harvest based on farm or rural household surveys. Out of the 
40 journal publications screened for this purpose, it was possible to single out different groups of 
indicators that seem to have a significant impact on losses and should, therefore, be considered when 
using modelling-approaches for on-farm losses. Although it is not always possible to standardize the 
combination of determining factors between different types of crops and countries, a common set of 
variables can be summarized that are usually available in farm or household surveys. Some key indicators 
repeatedly show significance, i.e., size of the farm/production quantity; timing of the harvest; on-farm 
storage; and weather conditions at harvesting. Additionally, some general elements for the model 
structure could be assessed, with a special emphasis on the type of loss indicator chosen for the 
independent variable. Although several studies used total loss quantities, or production quantities divided 
by total area harvested, the percentage loss seems to be a better fit to explain losses related to structural 
causes of losses. Some insights were also obtained on the method used for the regression models. While 
several studies had chosen multiple linear regression, some papers discussed the proper treatment of 
zeros, a relevant point considered in the following sections.  
 

3. Food loss modelling approach to be combined with farm surveys 

This chapter presents two modelling approaches that can be used to improve on-farm food loss estimates 
and reduce data collection costs. 

The first modelling approaches are meant to be used through sub-sampling the food loss module in the 
farm survey. The main result indicated for this area of application is to use a post-stratification method 
derived from a classification and regression tree (CART). This reduces standard errors for food loss 



    

25 
 

estimates based on sub-samples, thereby improving the estimates to compensate for the reduced sample 
size.  

The second modelling approach to be tested is to be used for consecutive survey rounds with food loss 
modules that cannot be included in all survey rounds. To produce loss estimates for in between missing 
years, a generalized structural equation model (GSEM) could be used to estimate losses, using only the 
information from the farm survey.  

3.1. Support sub-sampling of food loss modules in farm surveys with modelling 
approaches using post-stratification 

As mentioned earlier, the first area of application is to use modelling approaches to support the strategy 
of sub-sampling of food loss modules in farm surveys. To do this, four data sets from farm and household 
surveys were available, namely two pilot surveys, which were conducted on cereal crops in Malawi and 
Zimbabwe as part of the Global Strategy to Improve Agricultural and Rural Statistics (GSARS) in 2018, and 
were specific post-harvest loss surveys, the Fourth Malawi Integrated Household Survey 2016/17 (IHS4) 
and the Nigeria General Household Survey 2015/16 (GHS 2015/16), which was conducted by the World 
Bank. 

3.1.1 The process of testing the modelling approaches 
Dependent variable 
As a first step and based on the insights obtained from the literature review, multiple linear regression 
models were tested by choosing a set of independent variables related to harvest and post-harvest known 
to be relevant for losses. On the other hand, different dependent variables proposed in the literature 
were thereby assessed to determine whether to use total losses or percentage losses, total post-harvest 
losses or losses disaggregated by operation (harvest, cleaning, drying, storage, etc.). The first conclusion, 
on-farm loss percentages seem to be a better suited dependent variable than total on-farm losses for the 
given survey datasets. Percentage losses appear to better indicate the structural problems causing losses 
and the efficiency of handling the grains, while the quantity of losses is to some extent driven by the 
production volume.  

Model approach 
As the recorded percentage losses show a positive skewed distribution, the use of the natural log 
transformation of the percentage losses is suggested. A linear regression could be used to generate a 
model to predict mean percentage losses, but, in that case, predictions from the model are in log scale 
and the reverse transformation results in a bias of the estimated mean losses. These could be corrected 
by including a function of the variance of the errors in the estimated mean losses. Nevertheless, a Poisson 
regression model could be a better alternative to log-linear regression because the link function of this 
model is the natural log of the response. Additionally, a Poisson regression handles outcomes that are 
true zeros, while a log regression does not consider zeros because of ln(0) is -∞. Poisson distribution 
assumes that the expected response equals the variance of the response, so the use of robust standard 
errors is useful to handle these assumptions. 

Post-stratification 
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The second step entailed testing if post-stratification could be used with the main idea to improve the 
efficiency of the parameter estimates obtained from the sample survey and respective sub-samples. As 
stated by Smith (1991), it can be a useful method to reduce variance and correct for possible bias, and in 
this case, no external information was used. To do this, the proposal was to use CART to generate the 
post-stratification. The output of the CART is a decision tree in which each end node represents a stratum 
with a final prediction for the outcome variable, in this case on-farm losses. The algorithm selects the 
relevant independent variables and their respective cutting point, where the difference of the mean 
response for the resulting groups are maximized. Consequently, part of the variance in the sample survey 
is explained by the mean differences between the resulting groups. To make use of post-stratification in 
the modelling approach, the results of the classification and regression tree are used to set the estimation 
model, where the classification variable is used as the predictor and the mean prediction is used as the 
estimator of the mean on-farm loss. Then, the models are tested to determine whether they (i) are 
sufficiently well-specified to provide reliable estimates, and (ii) reduce the standard error as an assumed 
effect of the post-stratification procedure.  

 
Model specification test 
To test if the model is well suited, the model specification test (linktest) (Pregibon, 1980) is used to 
evaluate if the proposed models are correctly specified and determine if the post-stratification is a good 
food loss predictor. This test uses the linear predictor value 𝑋𝑏̂ and linear predictor value squared (𝑋𝑏̂)2 
as the predictors to rebuild the model (X represents the predictor variables and 𝑏̂ the estimated model 
coefficients). The variable (𝑋𝑏̂)2 should have no predictive power and the estimated parameter should 
be zero. On the contrary, if (𝑋𝑏̂)2 is significant, the linktest is significant, meaning that relevant variables 
have been omitted, or that the link function is not correctly specified. In this case, it implies a model with 
lack of fit, which is of limited use for prediction purposes. On the other hand, 𝑋𝑏̂ should be close to 1, 
which is considered a good linear predictor. 

It is expected that this modelling approach not only provides good and reliable on-farm loss estimates, 
moreover they simplify the modelling procedure and can help to improve the efficiency of the mean 
estimate by a reduction of its standard error. These gains, in turn, can support data collection on relatively 
small sub-samples. Data collection costs could be optimized without considerably compromising data 
quality, resulting in a complementing strategy to be used to design national data collection of losses within 
national farm and household surveys.  

3.1.2 Evaluate the gains of the modelling approach for sample size reduction 
The main idea of this research is to make use of the improvements in the mean estimate obtained from 
post-stratification to reduce on-farm loss data collection to a sub-sample. The models are assessed based 
on their capacity to produce estimates, which should not deviate considerably from the estimates 
obtained from the full sample. Additionally, a measure of efficiency is defined to evaluate whether the 
model-based estimates provide considerable gains that can be used for a reduction of the sub-sample of 
losses. Here, the ratio of the model-based variance to the actual full sample variance of an estimator of 
losses is built to express the efficiency gains in terms of a reduction in the variance. The relative efficiency 
of a model-based estimate compared to the full sample-based estimate is then: 
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                                                𝑅𝐸 = 1 − 𝑉(𝐿𝑚̂ )

𝑉(𝐿̂̂ )
                                                 (1) 

Where 𝑉(𝐿𝑚̂ ) represents the variance for the loss estimate based on the specified model (implying a 
post-stratification effect), and 𝑉(𝐿̂ ) represents the variance for the survey-based loss estimate from the 
full original sample. RE is then the percentage of variance reduction.  

To test the possibility for a reduction of the sub-sample, a simulation is run on the given the survey 
datasets. To create sub-samples, a progressive random elimination of 10 percent of the sample to a 
maximum of 50 percent reduction is conducted, generating five sub-samples. For the full sample and for 
each of the sub-samples, model-based mean loss estimates are obtained and compared to the full sample 
estimate sampling theory-based using a measure of relative efficiency (RE):  

Sample-based loss estimates from the full sample 𝐿̂ and its standard error √𝑉(𝐿̂) = 𝜎̂ and sample-
based loss estimates from sub-samples 𝐿𝑠̂ and standard errors √𝑉(𝐿𝑠̂) = 𝜎𝑠̂, (subsequently called 
sample-based estimates) 

Compared with:  

Model-based loss estimates from the full sample and sub-samples, 𝐿𝑚̂ and its standard error 
√𝑉(𝐿𝑚̂) = 𝜎𝑚̂ (subsequently called post-stratification model-based estimates) 

In addition to the model-based estimates, the specified loss models can also be used to impute missing 
values. To simulate the imputation of possible data gaps, the on-farm loss model is used here to impute 
losses in the sub-samples to create the full imputed sample. This exercise has some known limitations, 
especially when imputation techniques are applied to a larger proportion of the sample and lead to an 
artificial reduction of the standard error of the mean estimates. Accordingly, the exercise is presented in 
the results section, but highlighting the limiting interpretation of the standard error.  

For the purposes of comparison, the following is defined:  

Sample-based loss estimates from the full sample composed of a model-based imputed sub-sample 𝐿𝑖̂ 
and its standard error √𝑉(𝐿𝑖̂) = 𝜎𝑖̂.  

 

3.1.3 Datasets available from farm surveys in Malawi and Zimbabwe 
3.1.3.1 Global Strategy to Improve Agricultural and Rural Statistics farm loss surveys in Malawi and 
Zimbabwe 
The first set of available farm survey loss data comes from the field tests conducted for the  “Guidelines 
on the measurement of harvest and post-harvest losses” (GSARS, 2018a) in Malawi (FAO, 2020a) and 
Zimbabwe (FAO, 2020b). 

These farm loss surveys were implemented in 2017 and 2018 at a sub-national level, covering the Salima 
and Lilongwe districts in Malawi for maize, rice and groundnuts, and the Makonde district in Zimbabwe 
for maize. The analysis focused on maize only, the most important staple food in the surveyed countries, 
and the crop for which the most data are available in the available surveys. The sample size in Malawi 
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achieved 447 observations for maize crops, in the case of Zimbabwe 307 observations were obtained for 
maize. In each of these regions, agricultural production is the main source of livelihoods. Average area 
harvested is 1.2–2.7 hectares per household in Zimbabwe and 0.4− 0.6 ha in Malawi, predominantly rain-
fed and based on manual harvesting methods (see Table 4 for a summary of descriptive statistics of the 
main variables).  

Although data were collected for local, hybrid and composite maize, the modelling approach was applied 
to the aggregation of all varieties of maize. This is because on the one hand, recent empirical evidence 
highlights problems of misclassification with respect to farmers  declaring seed varieties (Woosen et. Al. 
2019, Wineman et.al. 2020). On the other hand, the sample sizes of the GSARS surveys are relatively small 
for testing modelling approaches. The main variable of interest − the percentage of losses over production 
was calculated as the total quantity of maize losses (from harvest to storage) divided by the quantity of 
land cultivated with maize. 

 

Table 4 Descriptive statistics of the variables relevant for the model (GSARS) 

Country Malawi GSARS Zimbabwe GSARS* 

Variable N Mean Std Dev N Mean Std Dev 

Loss percentage (harvest+post-harvest) 356 9.23 10.62 307 4.84 10.68 
Crop production (Kg) 358 1105.30 1591.86 307 5905.64 9030.31 
Age 357 45.43 14.70 307 50.15 15.92 

Harvest length (days in average) 352 5.12 4.51    

Area planted (ha)    305 1.52 1.15 
Percentage area harvested 358 0.51 0.45       

Variable N % N % 

Household head − Gender 357  307  

Female 84 23.53% 69 22.48% 

Male 273 76.47% 238 77.52% 

Household head − Education level 358  307  

No education 76 21.23% 42 13.68% 

Primary school 229 63.97% 106 34.53% 

Secondary school 53 14.80% 159 51.79% 

Household head - Literacy 358  307  

Yes 271 75.70% 264 85.99% 

No 87 24.30% 43 14.01% 

Thresh/shell the harvest 354  307  
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Yes 341 96.33% 293 95.44% 
No 13 3.67% 14 4.56% 

Clean/winnow the harvest 344  307  

Yes 210 61.05% 228 74.27% 

No 134 38.95% 79 25.73% 

Harvest drying method 328  307  

No dry 111 33.84% 4 1.30% 

Manual 165 50.30% 302 98.37% 

Mechanical 52 15.85% 1 0.33% 

Use of high-tech storage 358  307  

No storage 24 6.70% 4 1.30% 
No 286 79.89% 303 98.70% 

Yes 48 13.41%     

Use of pesticides during storage 318  305  

Yes 149 46.86% 253 82.95% 

No 169 53.14% 52 17.05% 

Assistance from government or NGOs 345  307  

Yes 165 47.83% 221 71.99% 

No 180 52.17% 86 28.01% 

*The results for Zimbabwe can be found in annex 4. 

 
3.1.3.2 Living Standard Measurement Study – Integrated Survey on Agriculture (LSMS-ISA) in Malawi and 
Nigeria 
This study uses two datasets from nationally representative household surveys in Malawi and Nigeria: the 
Fourth Malawi Integrated Household Survey 2016/17 (IHS4);6 and the Nigeria General Household Survey 
2015/16 (GHS 2015/16)7. The surveys are part of the Living Standards Measurement Study – Integrated 
Survey on Agriculture (LSMS-ISA). They contain an integrated household and agricultural component. The 
household survey component collects detailed socioeconomic information, including household-level 
data on consumption, income, assets and housing, and individual-level data on demographics, education 
and health. The agricultural component collects detailed information, among other items, on agricultural 
inputs used and outputs produced and output disposition, at the plot-level. Particularly important for the 
analysis is that information on inputs are collected at the plot level; information on agricultural output is 

 
6 The microdata, survey report and basic information document about the GHS 2015/16 implementation are 
available at https://microdata.worldbank.org/index.php/catalog/2936. 
7 The microdata, survey report and basic information document about the GHS 2015/16 implementation are 
available at https://microdata.worldbank.org/index.php/catalog/2734. 
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collected at the crop/plot level; and output disposition is collected at crop level. In addition, the IHS4 
2016/17 and GHS 2015/16 datasets include several exogenous climatological and geospatial variables. 
These include measures of distance, climatology, soil and terrain, and other environmental factors. Time-
series data on rainfall and vegetation have also been used to describe the survey agricultural season 
relative to normal conditions. 

The IHS4 2016/17 is the fourth wave of the Integrated Household Survey and includes 12,480 households 
surveyed in 780 enumeration areas. Households were visited one time throughout the 12 months of 
fieldwork between April 2016 and April 2017. The GHS 2015/16 is the third wave of the Nigeria General 
Household Panel and includes 4,581 households surveyed in 500 enumeration areas that were visited two 
times, between September 2015 and April 2016, one time right after the end of the planting activities and 
one time right after the end of the harvest activities relative to the 2015/16 rainy season. Given this two-
visit setup, the length of the recall period of the GHS 2015/16 is shorter than length of the recall period 
of the IHS4 2016/17. As with the GSARS surveys in Malawi and Zimbabwe, the samples for the IHS4 
2016/17 and GHS 2015/16 were restricted to maize (all varieties of maize were aggregated). 

The Malawi IHS4 and Nigeria GHS 2015/16 samples were restricted to observations reporting positive 
values for losses, and therefore excluded zero observations. The very high percentage of zero losses shed 
doubts on the accuracy of such zero reported losses, particularly given the very low percentage of zero 
losses in the GSARS surveys. The assumption here is that in LSMS-ISA surveys, farmers, in some cases 
interviewed several months after the harvest, might have reported only substantial losses and omitted 
marginal losses (see section 4.3 for an explanation of the differences in the scope and methodologies 
between GSARS and LSMS-ISA surveys). Including “false” zero losses could lead to downward-biased 
estimates. Although excluding zero losses could lead to biased (in the case that a certain percentage of 
reported zero losses are “true” zeros) or partial estimates (which, by definition, apply to the specific case 
of farmers reporting non-zero losses), after cross-checking loss variables with other strongly correlated 
variables, such as whether the crop was stored, the decision was made to restrict the sample to positive 
loss observations for the estimation of models and the simulation of sub-sampling scenarios, with the 
clear statement that the results from LSMS-ISA surveys in the study refer to farmers reporting non-zero 
losses. To assess the potential bias introduced by the sample restriction, the probabilities of non-zero and 
zero reporting were tested using propensity scores technique and the significant difference in 
characteristics between the those reporting zero losses and those reporting positive losses. Both tests 
show that the two groups are not systematically and significantly different (not shown here, available 
upon request) (see Table 5 for a summary of descriptive statistics of main variables). 

Table 5: Descriptive statistics of the variables relevant for the model (LSMS-ISA) 

Country Malawi IHS 4 Nigeria GHS 15/16* 

Variable N Mean Std Dev N Mean Std Dev 

Loss percentage (post-harvest) 1852 12.76 19.79 253 10.12 13.84 

Crop production (Kg) 1852 438.05 387.21 253 1048.88 1455.94 

Household head – Age 1850 44.72 16.31 253 52.91 13.38 

Harvest length (days in average) 1852 17.70 12.72 248 38.13 33.92 
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Area planted (ha) 1852 0.29 0.25 253 0.75 1.02 
Plot distance to household (Km) 1678 1.24 7.43 251 1.45 3.77 

Plot slope 1675 4.96 5.35 251 2.93 2.16 

Plot elevation 1675 901.57 306.37 251 294.74 239.94 
HH distance to market (Km) 1852 24.21 14.32 253 75.30 35.72 

Variable N % N % 

Household head – Gender 1852  253  

Female 578 31.21% 47 18.58% 

Male 1274 68.79% 206 81.42% 

Household head – Literacy 1852  253   
Yes 192 10.37% 87 34.39% 
No 1660 89.63% 166 65.61% 

Improved seed 1852  253  

Yes 853 46.06% 31 12.25% 

No 999 53.94% 222 87.75% 

Agro-ecological zones 1852  253  

Tropic-warm/semiarid 959 51.78% 91 35.97% 
Tropic-warm/subhumid 535 28.89% 147 58.10% 

Tropic-cool/semiarid 196 10.58% 12 4.74% 
Tropic-cool/subhumid 162 8.75% 3 1.19% 

Region Malawi 1850    

North 318 17.19%   

Central 714 38.59%   

Southern 818 44.22%     

Region Nigeria   253  

North Central   40 15.81% 

North East   40 15.81% 

North West   54 21.34% 

South East   84 33.20% 

South   19 7.51% 

South West     16 6.32% 

*The results for Nigeria are shown in annex 4.     



    

32 
 

 
3.1.3.3 Differences in the datasets in the survey design regarding farm losses 
The on-farm loss data obtained from the GSARS harvest and post-harvest loss surveys and the LSMS-ISA 
surveys differ from each other in terms of their design and data collection method. First, the GSARS data 
stems from a survey specifically designed to measure on-farm losses. With all the focus placed on the loss 
indicators, the questionnaire includes loss questions disaggregated by on-farm activities (harvest, 
threshing, winnowing/cleaning, and storage) and complementary data on socioeconomic, production and 
post-harvest characteristics. Additionally, on-farm loss data were collected by farmers’ declarations and 
by physical measurement. On the other hand, the scope of the survey is the local level, where it is probable 
that the population is less diverse than at the national level.  

The LSMS-ISA surveys, on the contrary, are designed to estimate agricultural production and productivity 
of the rural households in which losses are covered as one complementary indicator among various in the 
crop disposition section. It is collected by one sub-question on the destination of the harvested 
production, where farmers declare total post-harvest losses among quantities self-consumed, sold, given 
away as a gift, and used as seeds and as animal feed, without detailing the post-harvest activities. Harvest 
losses are not considered. The set of variables collected in the survey are less tailored to on-farm losses, 
but they cover a broader range of socioeconomic, production and environmental characteristics. The 
survey is nationally representative, whereby it is assumed to cover a more heterogeneous population 
compared to the GSARS surveys. Both surveys allowed for reporting loss and production quantities in local 
non-standard units, converted into kilograms using correspondence tables specific to each survey. 

For the 50x2030 Initiative, a similar questionnaire structure to the GSARS harvest and post-harvest loss 
survey was developed for the corresponding loss module recommending a more detailed assessment of 
harvest and post-harvest losses. On the other hand, the 50x2030 Initiative seeks nationally representative 
surveys, whereby the LSMS-ISA survey helps to better understand the implications of nationwide data in 
the modelling approach.  

3.1.4. Results of applying the modelling approach: estimation of the food loss models for Malawi 

3.1.4.1 Models obtained for the GSARS harvest and post-harvest loss surveys in Malawi 
Based on sampling theory, the estimated percent loss of maize using data from the GSARS survey in 
Malawi is 8.66 percent harvest and post-harvest losses with a standard error of 0.514 percent (95 
percent% CI: 7.66, 9.67). One of the best theory-based models for this sample, which includes selected 
variables and some interactions (not shown), predicted a mean estimate of 8.39 percent loss with a 
standard error of 0.502 (95 percent CI: 7.41, 9.38). 
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CART method: To improve the efficiency of the estimator, a regression tree was built to generate post-
stratification criteria to specify the loss estimation model. The regression tree for the GSARS loss survey 
in Malawi is shown in Figure 1. It selected eight cutting points on five variables, namely the quantity of 
maize produced (q_prod), the age of the household head (b4), the percent of the area harvested (c02), 
whether the household received any assistance from the government (f3) and the drying method used 
(d4_2). This tree generated nine terminal nodes with different mean percentage losses. It can be observed 
that the population was divided in different classification groups, starting at the level of production 
(q_prod) either being above or below 615 kgs. The difference between loss levels can be seen, namely 13 

percent for those with lower production, and 5 percent for those with larger production. The larger 
farmers were then further divided by those producing more than 1,588 kgs, showing a similar trend in 
terms of the loss percentages (2.9 percent for those who produce above that threshold, and 7 percent 
who produce less). For the producers with smaller production quantities, the classifications were built 
with the additional variables mentioned above. The highest loss percentages appeared to be among 
farmers who harvested less than 25 percent of an area and produced less than 164 kgs. Possibly, they 
faced damages that are also reflected in in losses at harvest and post-harvest.  

Model specification: The classification established as post-stratification was used as a predictor variable 
in a Poisson model to generate a percent loss estimate. The output from this model is shown in table 6. 

Table 5: Model with CART classification as regressor for the Malawi GSARS survey. 

Poisson regression   Number of obs     = 356 

    Wald chi2(8)      = 156.22 

Log pseudolikelihood = -1511089.3  Prob > chi2       = 0.000 

% HPHL Coefficient Robust Standard 
Error Z P 95% LL 95% UL 

Figure 1. CART classification for Malawi 
GSARS Survey 
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2 0.875 0.163 5.36 0.000 0.555 1.195 

3 0.943 0.206 4.59 0.000 0.540 1.346 

4 1.346 0.292 4.61 0.000 0.773 1.919 

5 1.328 0.193 6.88 0.000 0.950 1.707 

6 1.930 0.244 7.91 0.000 1.452 2.409 

7 1.377 0.355 3.88 0.000 0.682 2.073 

8 2.234 0.218 10.23 0.000 1.806 2.662 

9 1.850 0.237 7.8 0.000 1.386 2.315 

constant 1.097 0.147 7.44 0.000 0.808 1.386 
 

This is a parsimonious model8 that uses only one classification variable as the predictor, but it includes 
three independent variables in the classification criteria. To test the use of a Poisson model (natural log 
as link function) and the specification of the model with respect to the independent classification variable, 
the corresponding linktest is shown in Table 7. This test indicates that the specified on-farm loss model 
has very good functionality for estimating the mean percent losses, where the linear prediction 𝐿̂ 
presented a significant coefficient equal to 1, meaning a perfect correspondence (1:1) to the observed 
percent losses (p = 0.034), and the square predicted L̂2 had no predictive power (p = 1), with an estimated 
coefficient equal to zero. This is the ideal situation for model-based predictions. The estimated percentage 
loss of maize using the Poisson model was also 8.66 percent, but it had a smaller standard error of 0.429 
percent (95 percent CI: 7.8, 9.5). This improved variance can be attributed to the loss classifications 
identified in the post-stratification procedure of the CART method. It showed an efficiency increase of 
30.3 percent from the sample-based standard error to the model-based standard error.9 

Table 6. Model specification tests, results from the link tests Malawi GSARS 

Malawi GSARS 

Predictor Coefficient Std. Err. P 

𝐿
^

 1.000 0.471 0.034 

𝐿
^ 2

 0.000 0.104 1.000 
 

 
8 Brief description: A parsimonious model is one that accomplishes the desired level of explanation or prediction 
with as few predictor variables as possible. For more details see www.statisticshowto.com/parsimonious-model/ 
9 The efficiency increase or “model relative efficiency” (RE) is the percentual difference between the standard 
error obtained from the sample-based loss estimate on the full sample to the standard error obtained from the 
model-based loss estimates on the full sample or any size of the sub-samples.  



    

35 
 

3.1.4.2 Models obtained for the Malawi LSMS-ISA surveys 
The sampling base estimate for the percent loss of maize in Malawi using data from the Living Standard 
Measurement Studies showed a point estimate of 14.5 percent with a standard error of 0.661 percent (95 
percent CI: 13.2, 15.8). To improve the efficiency of the estimator for the post-harvest percentage losses 
of maize, the regression tree for the post-stratification criteria was derived, as shown in Figure 2.  

The regression tree selected three cutting points on three variables: crop harvested production 
(imp_production); IHS4 2016 region location (region); and agro-ecological zone (hhgv_ssa_aez09). This 
tree arrived at four terminal nodes with different mean percentage losses. The Poisson model for this 
sample apparently fit properly; the linktest shows very good functionality in estimating the mean 
percentage of losses. Linear prediction 𝐿̂ presents a correspondence of 1:1 to the observed food losses, 
but the coefficient appeared to be not significantly different from zero (p = 0.502). This was related to a 
bigger standard error of the estimated coefficient and probably implies weak predictive power. The 
square predicted 𝐿̂2 had no predictive power, and the coefficient was practically zero (p = 1), so the model 
passed the linktest, as shown in Table 8. 

The estimated percentage loss of maize using this model was also 14.5 percent, but with a slightly smaller 
standard error of 0.621 percent (95 percent CI: 13.3, 15.7). This represented an efficiency increase of only 
12 percent. The independent variables included in this model, which were not specific to harvesting 
procedures and referred to general aspects of production places, showed that recorded information is 
less related to food losses. 

 

Figure 2: CART classification for Malawi IHS4 Survey 
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Table 7 Model specification test results (linktest), for the Malawi IHS4 sample. 

Malawi IHS4 

Predictor Coefficient Std. Err. P 

𝐿
^

 1.000 1.495 0.503 

𝐿
^2

 0.000 0.264 1.000 
 

 

3.1.4.3 Results for sub-sampling obtained for the GSARS farm loss surveys in Malawi 
To evaluate changes in the relative efficiency of food loss estimates based on a progressive sample size 
reduction by simulating a reduction of survey data collection, models on sub-samples were estimated 
using the regression tree stratification obtained from the full sample. Table 9 shows the simulated sample 
reduction and the corresponding estimates for the percentage food loss for maize based on survey theory 
estimates and the model-based estimates.  

 

Table 8 Estimates, standard errors and relative efficiencies for sub-samples – Malawi GSARS. 

Sample 
reduction 

Survey-based loss estimate  
Post-stratification loss estimate 

(model-based) Model relative 
efficiency (RE) 

𝐿𝑠
^

 𝜎𝑠
^

 𝐿𝑚
^

 𝜎𝑚
^

 

0% 8.66 0.514 8.66 0.429 30.3% 

10% 8.58 0.543 8.58 0.441 26.4% 

20% 8.68 0.584 8.68 0.474 15.1% 

30% 8.42 0.592 8.42 0.481 12.6% 

40% 8.51 0.671 8.51 0.556 -17.1% 

50% 8.34 0.720 8.34 0.619 -44.7% 
 

With a sample reduction of 30 percent, the model estimate still presented good efficiency of 12.6 percent 
compared to the survey estimate using the whole sample, meaning that using models can help to improve 
food loss estimates with an important reduction in survey data collection. An alternative to sample 
reduction is to impute missing values to enhance model estimates. In Table 10, survey estimates and 
model-based estimates using imputed missing values on the reduced part of the sample are presented. 
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In this case, an important concern arises because the use of imputed samples reduces the standard errors 

𝜎𝑖
^

. This can be the result of the use of imputed values estimated as the most reliable expected for each 
missing data point and can result in artificially smaller standard errors than expected, representing a 
hidden reduction on the coverage of probability intervals respect to the assumed a priori. 

Table 9 Estimates, standard errors, and relative efficiencies for imputed sub-samples – Malawi GSARS. 

Sample reduction 
Survey-based loss estimate Estimates with model-based 

imputation 

𝐿𝑠
^

 𝜎𝑠
^

 𝐿𝑖
^

 𝜎𝑖
^

 

0% 8.66 0.514 8.66 0.514 

10% 8.58 0.543 8.93 0.506 

20% 8.68 0.584 8.73 0.483 

30% 8.42 0.592 8.79 0.476 

40% 8.51 0.671 9.15 0.470 

50% 8.34 0.720 9.05 0.438 
 

3.1.4.4 Results for sub-sampling obtained for the Living Standard Measurement Studies in Malawi 
To evaluate changes in the relative efficiency of food loss estimates based on a progressive sample size 
reduction, the LSMS-ISA from Malawi is reviewed. Table 11 shows the results of sample-based and model-
based percent loss estimates for simulated sub-samples. 

Table 10: Estimates, standard errors and relative efficiencies for sub-samples – Malawi IHS4 

Sample 
reduction 

Survey-based loss estimate 
Post-stratification loss 

estimate (model-based) Model relative 
efficiency 

𝐿𝑠
^

 𝜎𝑠
^

 𝐿𝑚
^

 𝜎𝑚
^

 

0% 14.52 0.661 14.52 0.621 12.0% 

10% 14.58 0.700 14.58 0.656 1.5% 

20% 14.32 0.741 14.32 0.699 -11.6% 

30% 14.25 0.798 14.25 0.756 -30.7% 

40% 13.79 0.837 13.79 0.777 -38.1% 

50% 13.65 0.892 13.65 0.835 -59.4% 
 

In this case, the gains obtained from model-based estimates are limited compared to a sample-based full 
sample estimate in the standard error. This can be due to the low quality of information related to on-
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farm loss determinants obtained in the LSMS-ISA survey compared to GSARS, which considers specific 
post-harvest loss data collection.  

In Table 12, survey and model estimates using imputed missing values on the reduced part of the sample 
are shown. As mentioned above, imputation can lead to artificially smaller standard errors.  

Table 11. Estimates, standard errors, and relative efficiencies for imputed sub-samples – Malawi IHS4 

Sample reduction 
Survey-based loss estimate Estimates with model-based 

imputation 

𝐿𝑠
^

 𝜎𝑠
^

 𝐿𝑖
^

 𝜎𝑖
^

 

0% 14.52 0.661 14.52 0.661 

10% 14.58 0.700 14.37 0.626 

20% 14.32 0.741 14.26 0.586 

30% 14.25 0.798 13.98 0.538 

40% 13.79 0.837 14.42 0.521 

50% 13.65 0.892 13.86 0.470 
 

3.1.5 Conclusions on the use of modelling approaches with sub-sampling food losses in farm 
surveys 

The results from using modelling approaches to support sub-sampling strategies for on-farm loss data 
collection were generally positive in cases in which loss models built from a post-stratification procedure 
showed sufficiently good prediction performance and efficiency gains on mean estimates. The data-driven 
post-stratification models improved model-based estimates obtained from full sampling and sub-
sampling compared to the survey-based estimates. Sub-sampling is thereby possible, without causing a 
considerable loss in the quality of the estimates. The models provided some scope for further reductions 
of the sub-sample.  

These results were stronger for the GSARS farm loss survey datasets compared to the LSMS-ISA survey 
data, which is to some extent related to the specific survey design used in the GSARS farm loss survey that 
builds on a detailed assessment of food losses. On the other hand, the GSARS farm loss survey was 
conducted at a sub-national level, covering a less heterogeneous population compared to the nationwide 
conducted LSMS-ISA surveys. The set of variables chosen to specify the classification groups follow the 
general knowledge of on-farm loss causes in which small-scale farmers tended to have higher loss 
percentages compared to large-scale producers. Production levels were, therefore, a structural variable 
that may signal efficiency of harvest and post-harvest procedures. Socioeconomic variables, such as the 
age of the producer, provide additional criteria for explaining on-farm loss differences, as older farmers 
tended to face higher losses. Access to technical assistance and the drying methods used were other 
relevant variables found to be specific to the model. Apart from those chosen by the CART method, other 
variables from the GSARS farm loss survey appeared be relevant to explain farm losses, such as storage 
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technology, use of pesticides during storage, days of harvesting and harvest methods. These are aligned 
with the literature review and were identified when testing the theory-based farm loss models, but are 
less relevant for prediction purposes.  

For the LSMS-ISA surveys, the model application in the case of Malawi resulted in little improvements 
obtained from modelling on the loss estimate, while the model-based estimations for Nigeria showed 
considerable improvements. It is, therefore, important to highlight the need for good quality data to 
obtain the expected gains from the use of the modelling approach. In the case of Malawi, the sample was 
spread over a twelve-month period and the recall period varied substantially within the sample if the 
fieldwork was completed after several months after the harvest period, while in Nigeria, two visits were 
undertaken close to the planting and harvest periods. The shorter periods between the survey and the 
harvesting period in the Nigeria survey likely helped make the responses more accurate (Smith, 1991; 
Pregibon, 1980; FAO, 2020a). The results obtained for the LSMS-ISA survey in Nigeria showed that the 
modelling approach worked on national surveys, although these might not focus on food loss 
measurement as the main survey objective and were, therefore, composed of a wider but less loss-specific 
set of variables. It is interesting to observe, that, apart from production quantities and area planted, the 
region and agro-ecological zone and the plot characteristics accounted for most of the effects identified 
in the CART Method for prediction purposes. These are valuable insights for the set of relevant variables 
to be included in farm surveys, a conclusion supported by the literature review, although a different 
approach was used by GSARS surveys where these factors have not been collected or included in the 
available datasets.  

The applications with respect to model-based imputation procedures to extrapolate the estimates from 
the sub-sample to the full sample show that using them is limited for improvements of on-farm loss 
estimates. Model-based imputations above 10 percent of the sample-size reduction started to show an 
artificial reduction of the standard error of the full sample. Accordingly, the model-based imputation 
should not be applied to extrapolate larger datasets. The artificial reduction of standard errors can result 
in potential errors in the use of confidence intervals, representing a risk for decision making. Overall, 
model-based imputations showed better results than median-based imputations and can, therefore, be 
used as a complement to fill possible non-responses.  

Some relevant conclusions can be derived from the information that can support farm loss modelling on 
sub-samples and are, therefore, recommended to be considered in survey design and implementation. As 
suggested in the 50x2030 Initiative sampling guidelines (50x2030 Initiative, 2021b), sub-sampling for the 
on-farm loss module in household and farm surveys is recommended for optimizing data collection costs. 
The saved resources could then be invested in a more precise assessment of losses, either by detailing 
declarations or by using other objective methods to improve the estimates. Indeed, for the given surveys, 
a more detailed loss module seems to provide better loss estimates and avoid unreliable zero-response 
rates, an area where further research is needed. Investments in better quality data with a reduced sample 
size also pay off in stronger loss models, which, in turn, helps to sustain the sub-sampling strategy. Finally, 
geo-references from LSMS-ISA are shown to be very useful for adding climate and plot characteristics to 
the survey data which, in turn, can be relevant for building farm loss models. Accordingly, given the 
minimal implementation burden for the enumerators, capturing Global Positioning System (GPS) 
coordinates of the surveyed household/dwelling and plots is highly recommended.  
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Recognizing, on the one hand, the importance of collecting data on losses to inform policymaking, and, 
on the other hand, the complexity of collecting such data, the results highlight possible gains from the 
integration of survey data with modelling to improve the quality of loss estimates and support sub-
sampling strategies. The combination of sub-sampling a detailed module on post-harvest losses with a 
modelling approach can be a useful recommendation for large-scale household and farm surveys, and 
through this approach, the 50x2030 Initiative could present the ideal opportunity for scaling-up the 
collection of data on post-harvest losses.  
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3.2 Modelling approach for estimating farm losses with two independent survey rounds as 
alternative to reduce data collection costs 

A second objective of using food loss modelling approaches with national farm surveys is the possibility 
to rotate the food loss module in the farm survey, a strategy used to reduce the lengths of the farm 
surveys and optimize survey costs. Some modules rotate from one survey round to the other, whereby 
food losses are collected only every second or third round of the farm survey. This can be relevant when 
farm surveys cover diverse thematic areas and each one has a specific set of indicators. To avoid 
jeopardizing the quality and completeness of the survey results due to fatigue of the respondents, a 
rotational modular survey system can be chosen. While a core module with only a few critical questions 
is kept for collecting the key variables, the rest of the modules can be used in alternate survey rounds. 
This strategy is suggested, for instance, in AGRI-Survey (GSARS/FAO, 2018) and the 50x2030 initiative´s 
guidelines (50x2030 Initiative, 2021b).  

Within this strategy, a modelling approach could complement and foster this strategy. Loss modules can 
be applied in to two or more survey rounds with the application. On these survey-based variables, a 
modelling approach can be tested for producing model-based loss estimates for the survey rounds that 
do not apply the food loss module. To do this, two distant survey rounds can be used to construct a GSEM 
to generate predictions of the mean responses of food losses, using a wide variety of independent 
variables as determinants, which are included in the core module of the farm survey. These could include 
socioeconomic characteristics, such as age, gender, level of education, harvesting methods and number 
of harvesting days, the use of improved seed, post-harvest technology used, information on the type of 
storage facility used, storage duration, use of pest control products during storage and information on 
region, weather and soil production conditions.  

3.2.1 Overall modelling approach to be tested 
In terms of the overall approach, GSEM was used for this area of application. This modelling approach has 
the advantage of being able to predict the dependent variable (here food losses) by identifying the 
interrelated effects (or paths) of the independent variables that can be used to produce model-based 
indirect estimates of food losses for surveys that collect only information on the predictors considered in 
a GSEM model.  

In this context and given the set of indicators from the farm and household survey, as a first step a GSEM 
model was built to create a system of relationships between predictor variables and the observed food 
loss using two distant year survey rounds that collects information of useful predictor variables and the 
food loss module. GSEM was then used to identify structural driver contributions to food loss. If the 
variables in the farm or household surveys are sufficient to specify a GSEM with reasonable prediction 
power, it can be a p tool for indirect estimation of food loss. 

In 1934, Sewall Wright introduced a model based on diagrammatic causal trajectories between variables 
called Path Analysis. Later, Jöreskog and Sörbom (1982), Keesling (1973), and Loh (2011) developed a 
general model of structural equations, known as the LISREL model (Linear Structural Relations). Jöreskog 
extended Exploratory Factor Analysis (EFA) to Confirmatory Factor Analysis (CFA), generating the concept 
of Structural Equation Model (SEM). 
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The Structural Equation Model is a form of graphical modelling in which a system of relationships between 
variables or multivariate latent factors is established (structural component). These relationships are 
translated into a system of statistical equations that fit simultaneously. Latent factors represent abstract 
concepts that can be observed indirectly through their effects on observed indicators or variables (CFA 
component). 

Furthermore, the combination of SEM modelling capabilities with the broader Generalized Linear Models 
(GLM) estimation framework, has been put together in a framework called generalized structural 
equation models (GSEM), which allow models to be built that include latent variables and a wide variety 
of response variables that are continuous, binary, ordinal or multinomial. Models are, for example, linear 
regression, gamma regression, logit, probit, ordinal logit, ordinal probit, Poisson, negative binomial and 
multinomial logit. 

Once the model is calibrated, it can be used to predict a food loss estimate for the subsequent farm 
surveys without a food loss module. It might be necessary to update the recalibration of the model after 
the food loss data are collected in a subsequent farm survey.  

3.2.2 Datasets used to test the modelling approach for Malawi  
For this approach, the Living Standard Measurement Study – Integrated Survey on Agriculture (LSMS-ISA) 
from Malawi and Nigeria were used because the two consecutive survey rounds with food loss data for 
these two surveys were available. The LSMS-ISA datasets used for Malawi were the Integrated Household 
Survey 2016/17 (IHS4), and 2018/19 (IHS5). For Nigeria the General Household Survey 2015/16 (GHS 
2015/16) and 2018/19 (GHS 2018/19) were used. Their variables and general descriptive statistics are 
presented in table 13. 

Table 12: Descriptive statistics of the variables relevant for the model (LSMS-ISA) Malawi Integrated 
Household Survey 2016/17 (IHS4), and 2018/19 (IHS5) 

Country Malawi IHS 4 2016/17 Malawi IHS 5 2018/19 

Variable N Mean Std Dev N Mean Std Dev 

Loss percentage (post-harvest) 7143 3.84 13.48 7465 3.09 10.50 

Crop production (Kg) 8009 375.73 371.19 7926 372.42 377.67 

Household head – Age 8006 44.81 16.39 7926 45.33 16.35 

Harvest length (days in average) 7999 17.95 15.50 7908 21.95 19.79 

Area planted (ha) 8009 37.19 24.87 7926 36.27 25.13 

Plot distance to household (Km) 7372 1.14 5.38 7446 1.23 4.65 

Plot slope 7355 5.28 5.53 7439 5.23 5.36 

Plot elevation 7355 864.54 324.00 7439 844.17 314.93 

HH distance to market (Km) 8008 23.33 14.55 7918 23.18 13.92 

Variable N % N % 

Household head – Gender 8006  7926  
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Female 2455 30.66% 2547 32.13% 

Male 5551 69.34% 5379 67.87% 

Household head – Literacy 8009  7962  

Yes 720 8.99% 1995 25.06% 

No 7289 91.01% 5967 74.94% 

Improved seed 8009  7962  

Yes 3786 47.27% 3151 39.58% 

No 4223 52.73% 4881 60.42% 

Agro-ecological zones 8008  7954  

Tropic-warm/semiarid 3764 47.00% 3572 44.91% 

Tropic-warm/subhumid 2828 35.31% 2813 35.37% 

Tropic-cool/semiarid 792 9.89% 884 11.11% 

Tropic-cool/subhumid 624 7.79% 685 8.61% 

Region Malawi 8006  7926  

North 1360 16.99% 1241 15.66% 

Central 2686 33.55% 2767 34.91% 

Southern 3960 49.46% 3918 49.43% 

 

3.2.3. Results from applying the modelling approach to Malawi  

In this section, the results obtained for the Generalized Structural Equation Models and its model-based 
estimates in Malawi are presented. The results for Nigeria are available in the in the annex. 

To build a generalized structural equation model, the first step entails establishing the theoretical 
relationship between the different sets of variables and post-harvest losses. Some of the factors 
influencing the level of food losses might be considered structural, as the size of the farm, the type of 
technology and practices used. For these, it is expected that they tend to produce similar levels of loss 
percentages in the given environment. Nevertheless, they are influenced by other factors that can affect 
the level of losses in the short-term. Here, the most relevant are weather conditions, the level of pest 
incidence, or market related fluctuations (less relevant if most of the crop production is for own 
consumption). Between these variables, and the variable of total production and post-harvest losses, 
multiple effects can exist. For the specification of GSEM, these variables are assessed and estimated. 

As a first step, the Exploratory Factor Analysis (EFA) was used to identify relevant environmental factors 
among all observed environmental variables in the LSMS-ISA survey data. The overarching goal of EFA is 
to identify the underlying relationships between measured variables and identify a set of "unobserved" 
variables called factors. Usually, it is used on a large number of measured variables, which are assumed 
to be related to a smaller number of factors. In the context of this application of environmental variables, 
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EFA can explain environmental changes using a certain number of factors in the set of independent 
variables, which are possible to observe from one survey round to another. For instance, differences in 
rainfall or temperatures from one survey to another, when it is assumed that they affect the level of food 
losses. This technique uses the structure of the correlation between all observed variables to extract the 
maximum of the common variance. The variables that achieve the maximum common variance are 
grouped together and these groups are referred to as factors. They represent latent variables, which are 
not measured directly, but are unobserved underlying drivers. These factors are estimated and then used 
as the explanatory environmental variables in the structural path diagramme of the proposed structural 
equation model (see annex 3 for details of the EFA procedures used). 

In these routines, EFA was applied to identify environmental factors that seemed to be relevant for the 
level of post-harvest losses. To do this, the Principal Factor Method (PFM) was used to analyse the 
correlation matrix. PFM seeks to find the fewest principal factors that can account for the common 
variance (correlation) of a set of variables. To select the number of factors that seem to be relevant, the 
so called “Kaiser criterion” is used, which selects the factors with an eigenvalue greater than one. 
Additionally, the cumulative proportion of the variance explained by the factors is used as complimentary 
criterion for selecting the factors, these are expressed as percentage, with the proportion showing the 
factor´s contribution to explaining the variance. To choose the factors to be considered, the criterion 
establishes a cutoff point at more than 80 percent of the cumulative proportion of the variance. 

For example, for environmental variables recorded for Malawi LSMS-ISA in the two Integrated Household 
Surveys, the Exploratory Factor Analysis produced the following first output, which is shown in Figure 3: 

Figure 3: Exploratory Factor Analysis Malawi LSMS-ISA 
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For this output, the Kaiser criterion indicates many factors from which five are selected. As shown in Table 
14, factors 1 to 5 have an eigenvalue that exceeds one. These five factors show a cumulative percentage 
of 94.58 percent of the total variance of the 16 variables included from the LSMS-ISA survey. 

To make the results obtained from EFA more reliable, and to better understand this output, the Varimax 
(Kaiser, 1958) rotation method was used. The rotation method rotates the variables identified in the five 
factors between the factors, resulting in a percentage of variance explained by each factor instead of the 
eigenvalue, while the cumulative proportion of the explained variance remains the same. The rotated 
eigenvalues, representing the variance for each factor, are presented in figure 4: 

Figure 4 Exploratory Factor Analysis after Kaiser Criterium to select main factors 

 

There is a clear, though small change in the proportion of the variance for each of the five factors when 
applying the Varimax rotation method. For example, the proportion for factor 1 in the initial output was 
0.4038, and in the rotated output result, it is 0.3753; for factor 5, the initial output showed a proportion 
of variance of 0.0667, in the rotated output result is 0.1193. The cumulative variance for all five selected 
factor remains at 94.58 percent%. 

For the interpretation of common factors, it is relevant to outline the variables behind the five factors, 
which are singled out in EFA. To do this, the rotated factor loadings are analysed and represent measures 
of the association between the factor and observed variables. Rotated factor loadings for this example 
are shown in Table 14. 

Table 13: Rotated factor loadings 

Variable Factor1 Factor2 Factor3 Factor4 Factor5 Uniqueness  
hhgv_af_bio_1 0.1581 0.068 -0.0422 0.9716 0.0212 0.0242 
hhgv_af_bio_8 0.1044 0.0368 -0.1227 0.9744 -0.0439 0.0213 
hhgv_af_bio_12 0.0104 0.9053 0.0939 0.033 0.1772 0.1389 
hhgv_af_bio_13 0.1628 0.9181 0.07 0.0598 0.0835 0.1151 
hhgv_af_bio_16 0.1047 0.9598 0.0294 0.0436 0.0799 0.0586 
hhgv_sq1 0.8473 -0.0991 0.192 0.0125 0.1331 0.2175 
hhgv_sq2 0.9258 -0.0295 0.1371 0.0705 0.0828 0.1113 
hhgv_sq3 0.8178 0.1666 -0.0611 -0.0316 0.004 0.2987 
hhgv_sq4 0.9386 0.0646 0.0375 0.1491 -0.0012 0.0913 
hhgv_sq5 0.964 0.1107 0.0392 0.1416 0.0172 0.0365 
hhgv_sq6 0.9727 0.1109 0.0357 0.1164 0.0132 0.0266 
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hhgv_sq7 0.7683 0.3039 -0.1075 0.0018 -0.0181 0.3055 
hhgv_h_in_tot 0.0824 0.1852 -0.0304 -0.0355 0.9459 0.0619 
hhgv_h_in_wetQ 0.0317 0.1108 -0.4013 0.0113 0.8863 0.0399 
hhgv_h_end_tot 0.08 0.1111 0.947 -0.0758 -0.1171 0.0651 
hhgv_end_wetQ 0.094 0.06 0.937 -0.1069 -0.2032 0.0568 

Rotated loadings that are as close to 1 or −1 as possible represent a high correlation between the observed 
variables and the latent factor. Low loadings are those that are as close to 0 as possible. The variable called 
“uniqueness” in Table 14, represents the proportion of variance of each observed variable not 
represented in the selected common factors. This proportion should be small, ideally under 0.4 or 0.5. If 
not, it indicates that the variable does not contribute to the explanation of the common factors and could 
be excluded from the analysis. 

For the interpretation of the latent factors, at loadings over 0.7 or below -0.7 are shaded blue in Table 14. 
Factor 1 includes seven observed variables: 

• hhgv_sq1 = Nutrient availability 
• hhgv_sq2 = Nutrient retention capacity 
• hhgv_sq3 = Rooting conditions 
• hhgv_sq4 = Oxygen availability to roots 
• hhgv_sq5 = Excess salts 
• hhgv_sq6 = Toxicity 
• hhgv_sq7 = Workability (constraining field management) 

These variables are descriptors of the soil´s physical and chemical characteristics, so factor 1 is referred 
to as “soil patterns”. Factor 2 includes three observed variables: 

• hhgv_af_bio_12 = annual precipitation (mm) 
• hhgv_af_bio_13 = precipitation of wettest month (mm) 
• hhgv_af_bio_16 = precipitation of wettest quarter 

These variables are precipitation indicators, so factor 2 is called “precipitation”. Factor 3 includes two 
variables: 

• hhgv_end_wetQ = total rainfall in wettest quarter (mm) within 12-month periods starting July 2015 
(ihs4) and 2018 (ihs5). 

• hhgv_h_end_wetqstart = start of wettest quarter in dekads 1-36, where the first week of July 2015 
(ihs4) and 2018 (ihs5)=1. 

These variables represent the start of the wettest quarter and the total rainfall in the second year of each 
survey time span, so factor 3 is called “Rainfall ending year”. Factor 4 considered two variables: 

• hhgv_af_bio_1 = Annual Mean Temperature (degC * 10) 
• hhgv_af_bio_8 = Mean Temperature of Wettest Quarter (degC * 10) 

These are annual temperature variables, so factor 4 is called “temperature”. Finally, factor 5 includes the 
last two variables: 



    

47 
 

• hhgv_h_in_wetQ = total rainfall in wettest quarter (mm) within 12-month period starting July 2014 
(IHS4) and 2017 (IHS5). 

• hhgv_h_in_wetQstart = start of wettest quarter in dekads 1-36, where first week of July 2014 (IHS4) 
and 2017 (IHS5) =1. 

These variables represent the start of the wettest quarter and the total rainfall in the first year of each 
survey time span, so factor 5 is called “rainfall starting year”. 

Estimation of GSEM: For the next step, the construction of a path diagramme is presented. A graphical 
representation of the structural relationships between the variables based on a theoretical framework is 
presented in Figure 5. The path diagramme is developed to represent the linear relationships between 
the determinants of crop production volumes and food loss percentages, using graphical devices.10 For 
this example, a graphical representation of the proposed path diagramme for the relationships between 
determinants of crop production and food losses are explained below.  

In this representation, the response variables are crop production volumes and post-harvest loss 
percentages. Notice that both variables are modelled using a Poisson regression (log link function and the 
Poisson distributional family).  

In the bottom left of the diagramme, there is a box named “sample”, which is a dummy variable and 
represents changes between survey rounds (year-to-year). It has linear effects on four of the five 
environmental latent factors (LF2 to LF5) and a direct effect on the log post-harvest losses in percent 
(green arrows). Environmental latent factors receive an arrow representing the regression response, each 
with their specific error term i. At the top of the diagramme, there are two social variables, age of the 
head of the household and a dummy variable indicating if their gender is female.  

With blue arrows, there is a set of additional determinants in the medium upper left of Figure 5. These 
include the use of improved seed, the region of the country, the field elevation and the latent variable 
related to soil conditions. The blue arrows represent the linear contribution of the determinants on the 
log crop production, and the red arrows represent linear contributions on the log post-harvest losses in 
percent. 

 

 

 

 

 

 

 

 
10 The statistical programme STATA has a built-in device called “SEM Builder” under which path diagrammes for 
GSEMs can be created and analysed. 
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Figure 5: Graphical representation of the structural relationships between the variables 
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Fitting process: The second step is the fitting process using sampling weights. This can be used to correct 
bias and adjust standard errors. The coefficient estimates for the full model, are shown in Table 5.  

Table 14: Coefficient estimates for the latent factors in the GSEM 

Equation Coef. Robust     
Std. Err. z P LB 95% UB 95% 

Crop production       

LF1 Soil patterns -0.010 0.011 -0.90 0.369 -0.032 0.012 
LF2 Precipitation 0.051 0.012 4.26 0.000 0.028 0.075 
LF3 Rainfall ending year -0.029 0.024 -1.22 0.221 -0.076 0.018 
LF4 Temperature -0.265 0.038 -6.95 0.000 -0.340 -0.190 
LF5 Rainfall starting year 0.017 0.013 1.38 0.167 -0.007 0.042 
age of household -0.002 0.001 -4.29 0.000 -0.004 -0.001 
Household female (yes) -0.089 0.021 -4.31 0.000 -0.129 -0.048 
improved seed (yes) 0.149 0.019 7.85 0.000 0.112 0.187 
Elevation (m) -0.0003 0.0001 -2.57 0.010 -0.001 0.000 
Region central 0.032 0.040 0.80 0.425 -0.047 0.112 
Region south -0.288 0.047 -6.12 0.000 -0.380 -0.196 
sample (year) 0.077 0.039 1.97 0.049 0.000 0.153 
_cons 2.699 0.125 21.55 0.000 2.453 2.944 
ln(area planted) 1 (exposure)         
Post-harvest loss in percent      

Crop production -0.001 0.000 -8.17 0.000 -0.001 -0.001 
LF2 Precipitation -0.046 0.037 -1.25 0.211 -0.118 0.026 
LF3 Rainfall ending year -0.116 0.051 -2.25 0.024 -0.217 -0.015 
LF4 Temperature 0.276 0.039 7.14 0.000 0.201 0.352 
LF5 Rainfall starting year -0.142 0.047 -3.00 0.003 -0.235 -0.049 
age of household -0.001 0.002 -0.32 0.749 -0.005 0.004 
Household female (yes) -0.056 0.080 -0.70 0.482 -0.213 0.100 
sample (year) -0.423 0.121 -3.50 0.000 -0.660 -0.186 
_cons 1.799 0.118 15.31 0.000 1.569 2.030 
LF2 Precipitation       

sample (year) 0.087 0.017 5.25 0.000 0.055 0.120 
_cons -0.108 0.011 -9.44 0.000 -0.130 -0.085 
LF3 Rainfall ending year       

sample (year) 1.486 0.009 163.54 0.000 1.468 1.504 
_cons -0.860 0.007 -124.62 0.000 -0.874 -0.847 
LF4 Temperature       

sample (year) -0.032 0.019 -1.67 0.095 -0.069 0.006 
_cons -0.065 0.014 -4.51 0.000 -0.093 -0.037 
 
LF5 Rainfall starting year 

     

Sample -0.724 0.015 -48.68 0.000 -0.753 -0.695 
_cons 0.215 0.009 23.19 0.000 0.197 0.234 
var(e.f2) 0.868 0.013   0.844 0.893 
var(e.f3) 0.308 0.005   0.299 0.317 
var(e.f4) 0.963 0.011   0.941 0.985 
var(e.f5) 0.658 0.011   0.636 0.680 
cov(e.f3,e.f5) 0.237 0.005 45.82 0.000 0.227 0.247 

  

Each equation in this GSEM can be identified and described, and their coefficients represent the direct 
effect between the independent variables and the response for each equation. In Table 15, the first 
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equation is a Poisson regression to model crop production, where the size of the planted area is used as 
an offset variable. Estimated coefficients show that precipitation had a positive effect and temperature 
had a negative effect on crop production, while female and older household heads had negative effects 
on crop production. The use of improved seeds, lower terrain elevation, and the southern region are 
related to higher crop production. A significant increase in crop production is observed for the second 
survey sample round (sample (year)). 

The second equation is a Poisson regression to model post-harvest loss in percent in which a higher crop 
production is related to a lower percentage of post-harvest losses. Lower mean temperatures, shorter 
rainfalls for starting and ending years are related to a lower percentage of post-harvest losses. In the 
second survey (sampling round) there is a significant reduction in the percentage of post-harvest losses. 

The third to sixth equation compare the weather conditions between both years, given that these are 
assumed to have an impact on the level of production and losses. The third equation shows an increase 
in precipitation between both years, the fourth shows a shorter rainfall period in the ending year for the 
second year, and the sixth equation a longer rainfall period in the starting year for the second year. The 
fifth equation does not show significant changes for temperature between both survey rounds. These last 
equations are linear regressions for the effect of survey rounds on environmental latent factors. 

At the bottom of the coefficient estimation output are the estimates of residual variance for linear 
regression equations (the regression error terms) and the covariance between latent factors 3 and 5 
(rainfalls at starting and ending years). These are represented as a double-headed arrow between error 
terms for both environmental latent factors. 

Model reduction procedure: The third step is a model reduction procedure during which a step-by-step 
manual process is used to delete useless terms in the model without the loss of predictability efficiency 
for estimation purposes. In each step, the least significant term (higher p values) is carefully eliminated, 
checking to avoid changes in the remaining variable relationships. In each step, the path arrow with the 
least significant coefficient is eliminated in the graphical diagramme. 

The next step is the analysis of the fitted coefficient for the step-in course. If no significant changes of the 
coefficients and their level of significance are evidenced, the process continues to eliminate the least 
significant arrow. When a variable in the model has no arrows representing relationships with other 
variables, it is directly deleted from the model. The deletion criteria used is based on significant values 
being over 0.1. 

After this procedure, the first model assigned 12 paths to the crop production equation, while the final 
model contains only nine paths, i.e. process LF1 “soil patterns” was eliminated. The percentage of post-
harvest losses had eight paths in the first model and ended with five paths after the reduction process. 
The rest of the model components remained unchanged. The coefficient estimates for the final reduced 
model are presented in Table 16. 
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Table 15: The coefficient estimates for the final reduced GSEM model 

Equation Coef. Robust Std. Err. z P LB 95% UB 95% 

Crop production       

LF2 Precipitation 0.053 0.012 4.43 0.000 0.030 0.076 
LF3 Rainfall ending year -0.030 0.018 -1.68 0.094 -0.064 0.005 
LF4 Temperature -0.252 0.035 -7.11 0.000 -0.321 -0.182 
Age of household -0.002 0.001 -4.30 0.000 -0.004 -0.001 
Household female (yes) -0.089 0.021 -4.32 0.000 -0.130 -0.049 
improved seed (yes) 0.150 0.019 7.88 0.000 0.112 0.187 
Elevation (m) -0.0003 0.0001 -2.45 0.014 -0.0005 -0.0001 
Region south -0.314 0.026 -12.16 0.000 -0.364 -0.263 
Sample (year) 0.066 0.029 2.26 0.024 0.009 0.124 
_cons 2.689 0.111 24.16 0.000 2.471 2.907 
ln(area planted) 1.000 (exposure)         
Post-harvest loss in percent      

Crop production -0.001 0.000 -8.39 0.000 -0.001 -0.001 
LF3 Rainfall ending year -0.106 0.050 -2.12 0.034 -0.204 -0.008 
LF4 Temperature 0.282 0.039 7.23 0.000 0.205 0.358 
LF5 Rainfall starting year -0.151 0.047 -3.23 0.001 -0.243 -0.059 
sample (year) -0.452 0.122 -3.70 0.000 -0.691 -0.212 
_cons 1.753 0.081 21.59 0.000 1.594 1.912 
LF2 Precipitation       

sample (year) 0.087 0.017 5.25 0.000 0.055 0.120 
_cons -0.108 0.011 -9.44 0.000 -0.130 -0.085 
LF3 Rainfall ending year       

sample (year) 1.486 0.009 163.54 0.000 1.468 1.504 
_cons -0.860 0.007 -124.62 0.000 -0.874 -0.847 
LF4 Temperature       

sample (year) -0.032 0.019 -1.67 0.095 -0.069 0.006 
_cons -0.065 0.014 -4.51 0.000 -0.093 -0.037 
LF5 Rainfall starting year      

sample (year) -0.724 0.015 -48.68 0.000 -0.753 -0.695 
_cons 0.215 0.009 23.19 0.000 0.197 0.234 
var(e.f2) 0.868 0.013   0.844 0.893 
var(e.f4) 0.308 0.005   0.299 0.317 
var(e.f3) 0.963 0.011   0.941 0.985 
var(e.f5) 0.658 0.011     0.636 0.680 
cov(e.f3,e.f5) 0.237 0.005 45.82 0.000 0.227 0.247 

 

Final path diagramme for the reduced model: This reduced model has the same interpretation of 
estimated direct effects on response variables obtained from the full model. The estimated coefficients 
for each direct path appear explicitly in Figure 6 and correspond to those obtained in the model output in 
Table 16. The fitted path diagramme includes coefficients for the direct effects. 
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Figure 6: Final path diagramme for the reduced model 

  

 

Mediator variable: Furthermore, it is possible to evaluate indirect effects of some independent (x) 
variables on the dependent variable (y) via a mediator variable (m). In this example, the significant positive 
change of the crop production has a direct effect of the difference between the first and the second survey 
round (“sample” in Figure 6). In the path, the crop production is conditionally independent from the 
environmental latent factors, but there are three other paths through which the sample contributes to 
changes in crop production through environmental factors. For example, an indirect path from “sample” 
to the level of crop production is represented in the path diagramme by the connection between “sample” 
to “LF2 Precipitation” (green arrow), and then from “LF2 Precipitation to “crop production” (blue arrow), 
where “LF2 Precipitation” acts as a mediator variable. The indirect effect is the multiplication of the 
coefficients of the arrows in the path, with the green coefficient showing a value of 0.087 and blue 
coefficient of 0.053, so the indirect effect is 0.087 ∗ 0.053 =  0.0046. This is summarized in Figure 7. 
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Figure 7: "LF2 Precipitation" indirect effect on post-harvest loss through production 

 

 

It shows that there is a significant positive indirect effect of the survey round “sample” on “crop 
production”, mediated by LF2 Precipitation. Another estimated indirect effect of “sample” on “crop 
production” is mediated by “LF3 Rainfall ending year”, as shown in Figure 8. 

Figure 8: "LF3 Rainfall ending year" indirect effect on post-harvest loss through production 

 

 

In this case the indirect effect is negative but not significant. The estimated indirect effect of the “sample” 
on “crop production” mediated by LF4 Temperature is shown in Figure 9. 

Figure 9 "LF2 Temperature" Indirect effect on PHL loss through production 

 

 

This indirect effect is positive, but also is not significant. To estimate the total effect of survey the round 
“sample” on "crop production”, the estimated overall effect is the sum of direct and indirect effects. This 
is estimated in Figure 10. 
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Figure 10: "Sample" indirect effect on post-harvest loss through production 

 

This means that the total effect of the survey round “sample” on “crop production” tends to be positive 
but is not significant. 

The significant indirect effects of survey round “sample” (green arrows) on post-harvest losses (red 
arrows), mediated by environmental factors are shown as followed. A negative significant effect mediated 
by “LF3 Rainfall ending year”: 

Figure 11:"Sample" indirect effect on post-harvest loss through LF3 Rainfall ending year 

 

A positive significant effect mediated by “LF5 Rainfall starting year”: 

Figure 12 "Sample" indirect effect on post-harvest loss through LF5 Rainfall starting year 

 

 

In addition, it is possible to estimate the indirect effects including two mediators (three connecting 
arrows), for example the effect of the survey round “sample” via environmental factors (green arrows) 
and crop production (blue arrows), and by connecting on post-harvest losses (red arrow). In the example, 
an estimated negative effect of “sample” on “post-harvest losses” via “LF2 Precipitation”, via “crop 
production” is shown in Figure 13. 
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Figure 13: "Sample" indirect effect on PHL through LF2 Precipitation 

 

This estimated coefficient is very close to zero and is, therefore, possibly not important for prediction 
even though it is shown to be significant. 

The total effect of survey sample round on post-harvest losses summarized in Figure 14. 

Figure 14: Total effect of survey sample round on post-harvest losses 

 

The total effect of time elapsed between the two survey rounds is a significant reduction in post-harvest 
losses, mainly through the changes in the weather conditions between both production cycles, and to a 
minor degree, through the direct impact of the levels of production. 

Evaluation of the model obtained for Malawi: Following the establishment of the factor and mediator 
variables, GSEM is used to estimate post-harvest loss percentages. As a result, model-based estimates can 
be generated for following survey rounds for which food losses are not being collected. The model was, 
therefore, built on two possibly distant survey rounds.  

The post-harvest loss model-based estimate for the whole period of the two included survey rounds 
obtained is that 3.85 percent of maize crop production being lost in the post-harvest period.  
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Figure 15: Post-harvest loss model-based estimate for the whole period of the two included survey 
rounds 

 

The estimates of the post-harvest loss for each survey round are 4.86 percent in the first survey round, 
and 3 percent in the second survey round (both are model-based estimates). Their characteristics are 
summarized in Figure 16.  

Figure 16: Model-based estimates of post-harvest loss for each survey round 

 

Model specification tests: Finally, the linktest is used to validate the use of the GSEM model for estimation 
propose and its predictive power. Figure 17 present a summary of the output for the test.  

Figure 17 Result of the linktest for the identified GSEM model (test model specifications) 

 

The model correctly passes this test; the squared prediction _hatsq has a non-significant coefficient and 
is almost zero, while the linearity in the prediction _hat is significantly positive. This indicates that the 
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model’s specifications are sufficiently good and the model can be used to produce model-based 
estimations of post-harvest losses for the given LSMS-ISA survey in Malawi. 

3.2.4 Conclusions on modelling losses from independent survey rounds 
For this research GSEM models were used to produce post-harvest loss estimates at the farm level based 
on input variables from a national household or farm survey. The use of GSEM can be useful to understand 
the contribution of several determinant variables, including the environmental factors, and changes over 
time using two or more independent survey rounds on the percentage of post-harvest losses. In this 
regard, the model helps in evaluating total and partial contributions of determinants on losses, such as 
conditional independent effects and possible non-independent effects based on the covariance between 
some determinants.  

Another very important use of GSEM, is that it gives an efficient and reliable procedure to estimate the 
percentage of post-harvest losses. In this regard, GSEM can distinguish between more structural factors 
influencing the overall level of losses and factors that can have a short-term immediate effect observed 
between survey rounds. The latter refers especially to weather factors that can have an immediate impact 
on the level of losses, with all other harvest and post-harvest practices being constant. This allows the 
model to factor in, first, a general level of losses given the structural characteristics of the farm, and 
second, the variables that drive the level of losses from one year to the other. Additionally, this model 
design makes it possible to distinguish between direct and indirect effects, whereby it can be considered 
that the level of losses is to some extent driven by the level of production as a mediator, and the indirect 
effect of variables that are key drivers of the level of production. 

Based on the GSEM models tested in this research, the first relevant conclusion is that the variables 
collected in the given household surveys were sufficient to produce a model with predictive power and 
sufficiently good model specifications. One relevant input from the household survey came from the 
comprehensive set of weather variables provided in the data base. These were decisive for understanding 
the differences of the loss levels from one survey round to the next. On the other hand, the variables that 
are considered structural and thus influence the level of losses more in the medium term were covered 
by the following variables: age; gender; region; and type of seeds used. These variables are usually 
constant in the short term, even though they influence the overall level of losses; they only change in the 
medium to long term. 

The variables that affect losses in the short term are mainly weather factors. Using weather factors, based 
on the set of available variables in the LSMS-ISA survey in Malawi, it was possible to aggregate a number 
of common factors that cumulatively represent 94.5 percent of the total variance of the weather variables 
and their differential influence in the food loss percentage for the two survey rounds. This supports the 
assumption that weather variables change the loss level from one year to the other. These variables can 
be obtained by capturing the GPS information of the farm and are therefore recommended to be included 
in farm and household surveys.  

Although the models pass the specification tests and show an acceptable level of predictive power, they 
have not been tested for their ability to produce indirect food loss estimates for the survey rounds without 
the inclusion of the food loss module. To do this, the models require a longer series of survey rounds 
(preferably at least 2-3 survey rounds). In addition, further development is needed to generate a 
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prediction model that first needs to be calibrated, and then be connected to the survey variables that are 
to be used for doing the projection. These developments could be subject to further research.  

The presented modelling approach can be of relevance to national statistics offices, especially when 
agricultural or household surveys are designed on rotating modules. Accordingly, the loss module might 
not be collected in each survey round. In this scenario, a calibrated prediction model could be a cost-
effective option to generate loss estimates in-between the application of the loss module. The survey-
based loss estimates that are collected, usually in a frequency of 3-4 years, show the medium-term 
structural trend of the level of losses (e.g., because of improvements of the production and post-harvest 
handling systems). The modelled-based estimates in-between the survey rounds most likely replicate the 
overall structural loss levels but they also reflect the loss variations that might be introduced due to 
weather conditions.  

 

4. Discussion and recommendations 

The research component to identify modelling approaches that can support the quality and cost-efficiency 
of harvest and post-harvest loss measurement in national farm and household surveys derived some 
insights and potential areas of use.  

A first area of application is the use of modelling approaches to compensate for sub-sampling of food loss 
modules. Sub-sampling is one of the main recommendations of the 50x2030 agriculture survey design, as 
it enables countries to cover a diverse set of indicators without overloading the national farm and 
household surveys. The modelling approach used to improve the loss estimates of the survey with model-
based estimates were overly positive. To a certain level, the tested farm and household surveys appear 
to cover sufficient variables to make it possible to explain parts of the variance and improve its quality in 
model-based estimates. The used modelling approach and its application requires less specialized 
capacities in the National Office of Statistics and can be adapted by a team of statisticians that are familiar 
with regression analysis. Sub-sampling, additionally, offers the possibility of collecting a more detailed 
loss questionnaire, which can improve the response rates and the accuracy of loss declarations. Though, 
some recommendations need to be considered for the questionnaire design regarding some of the 
variables that appear to support the model specification and estimation power. 

On the other hand, the models to predict losses in between survey rounds that collect the loss module is 
still subject to further research. This exercise has made it possible to identify the first elements of the 
modelling approach, building on a structural equation model that can consider the structural drivers of 
losses and those with a short-term year-to-year impact. The changes in losses from one year to another 
only rely on weather variables, while other relevant short-term drivers of losses might be missing, such as 
pest infestation, diseases, overall supply and market situation. To incorporate them, corresponding 
variables are needed in the farm and household survey or from other external data sources. The 
prediction power of these models still needs to be assessed in more detail and built based on the variables 
that are collected in every survey round. The use of this modelling approach requires more specialized 
experience in statistical modelling, which might not be available in national statistics offices. Collaboration 
with more specialized research centres or University departments might, therefore, is needed, 
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complementary to broader capacity development of statistical modelling in the National Statistics Offices. 
Nevertheless, this modelling approach has the potential to reduce data collection costs and can be used 
to replace rotating food loss modules in integrated agricultural and household surveys.  

 

  



    

60 
 

References 
50x2030 Initiative & FAO (2021a) A Guide to Sampling. Technical Note Series. 50x2030 Sampling Strategy_14 June 
COVER ACK_SG_tracked.pdf 

50x2030 Initiative (2021b). The 50x2030 Initiative: Bringing together committed partners to fill the agricultural data 
gap. Rome: World Bank. 

Adisa, R.S., Adefalu, L.L., Olatinwo, L.K., Balogun, K.S. & Ogunmadeko, O.O. (2015). Determinants of post-harvest 
losses of yam among yam farmers in Ekiti State, Nigeria. Bulletin of the Institute of Tropical Agriculture, Kyushu 
University. 38 (1):73-78.  

Affognon, H., Mutungi, C., Sanginga P. & Borgemeister, C. (2016). Unpacking Postharvest Losses in Sub-Saharan 
Africa: a meta-analysis. World Development,66, 49−68.  

Agarwal, M., Agwaral, S, Ahmad, S., Singh, R. & Jahayari, K.M. (2021). Food loss and waste in India: the knowns 
and the unknowns. World Resources Institute India. www.wri.org/publication/food-loss-and-waste-in-india 

Aidoo R., Rita, A. & Mensah, O.J. (2014). Determinants of postharvest losses in tomato production in the Offinso 
North District of Ghana. Journal of Development and Agricultural Economics. 6(8):338−344.  

Alidu, A-F, Ali, E.B. and Aminu, H. (2016). Determinants of post-harvest losses among tomato farmers in the 
Navrongo Municipality in the upper east region. Journal of Biology, Agriculture and Healthcare 6(12): 14−20. 

Ambler, K., Brauw, A. & Godlonton, S. (2018). Measuring postharvest losses at the farm level in Malawi. Australian 
Journal of Agricultural and Resource Economics. 62 (1): 139−160.  

Amentae, T.K., Tura, E.G., Gebresenbet G. & Ljungberg D. (2016). Exploring value chain and post-harvest losses of 
Teff in Bacho and Dawo districts of central Ethiopia. Journal of Stored Products and Post-harvest Research. 
7(1),11−28. 

Ansah, I.G.K. & Tetteh, B.K. (2016). Determinants of yam postharvest management in the Zabzugu District of 
Northern Ghana. Advances in Agriculture.  

Arun, G.C. and Ghimire, K. (2019). Estimating post-harvest loss at the farm level to enhance food security: A case of 
Nepal. International Journal of Agriculture Environment and Food Sciences, 3(3):127−136.  

Babalola, D.A., Makinde, Y.O., Omonona, B.T., & Oyekanmi, M.O. (2010). Determinants of postharvest losses in 
tomato production: a case study of Imeko – Afon local government area of Ogun state. Journal of Life and Physical 
Science. 3(2): 14–18. 

Basavaraja, H., Mahajanashetti, S.B. & Udagatti, N.C. (2007) Economic analysis of post-harvest losses in food grains 
in India: a case study of Karnataka. Agricultural Economics Research Association (India). 20(1): 176−126. 

Begum, E.A., Hossain, M. & Papanagiotou, E. (2012). Economic analysis of post-harvest losses in food-grains for 
strengthening food security in northern regions of Bangladesh. International Journal of Applied Research in Business 
Administration and Economics. 1(3): 56−65. 

Dharmathilake, N.R.D.S; Rosairo, H.S.R; Ayoni, V.D.N & Herath, R.M. (2020). Implications of post-harvest 
losses and acreage response of selected upcountry vegetables from Nuwara-Eliya District in Sri Lanka on 
sustained food security. Journal of Agriculture Sciences, 15(1)  

Delgado, L., Schuster, M. & Torero, M. (2017). The reality of food losses: a new measurement methodology. IFPRI 
Discussion Paper 1686. Washington, DC, International Food Policy Research Institute.  

Delgado, L., Schuster, M. & Torero, M. (2020). Quantity and quality food losses across the value chain: a comparative 
analysis. Food Policy. 98: 101958. 

https://www.50x2030.org/sites/default/files/resources/documents/2021-09/50x2030%20Sampling%20Strategy_14%20June%20COVER%20ACK_SG_tracked.pdf
https://www.50x2030.org/sites/default/files/resources/documents/2021-09/50x2030%20Sampling%20Strategy_14%20June%20COVER%20ACK_SG_tracked.pdf


    

61 
 

Falola, A., Salami, M.F., Bello, A.A. & Olaoye, T.A. (2017). Effect of yam storage techniques usage on farm income 
in Kwara State, Nigeria. Agrosearch,. 17(1):54–65.  

Folayan, J.A., Babalola, J.A.& Ilesa, A. (2013). Determinants of post-harvest losses of maize in Akure North Local 
Government Area of Ondo State, Nigeria. Journal of Sustainable Society. 2(1).  

FAO (2019). The State of Food and Agriculture. Moving Forward on Food Loss and Waste Reduction. Rome. 
http://www.fao.org/3/ca6030en/ca6030en.pdf 

FAO (2020a). Guidelines on the measurement of harvest and post-harvest losses. Estimation of crop harvest and 
post-harvest losses in Malawi. Maize, rice and groundnuts. Field Test Report. Rome. 
www.fao.org/3/cb1562en/cb1562en.pdf 

FAO (2020b). Guidelines on the measurement of harvest and post-harvest losses. Estimation of crop harvest and 
post-harvest losses in Zimbabwe. Field Test Report. Rome. https://www.fao.org/documents/card/en/c/CB1554EN/ 

Garikai, M. (2014). Assessment of vegetable postharvest losses among smallholder farmers in Umbumbulu area of 
KwaZulu-Natal province. University of KwaZulu-Natal, Pietermaritzburg, South Africa Master’s Thesis,. 
http://hdl.handle.net/10413/11918 

Global Strategy to improve Agricultural and Rural Statistics (GSARS). (2018a). Handbook on the Agricultural 
Integrated Survey (AGRIS). AGRIS Handbook on the Agricultural Integrated Survey (fao.org)  

Global Strategy to improve Agricultural and Rural Statistics (GSARS) (2018b). Guidelines on the measurement of 
harvest and post-harvest losses. Rome. https://www.fao.org/3/ca6396en/ca6396en.pdf 

Hengsdijk, H., & De Boer ,W.J..(2017). Post-harvest management and post-harvest losses of cereals in Ethiopia. Food 
Security. 9, 945–958.  

Kaiser, H.F. (1958). The varimax criterion for analytic rotation in factor analysis. Psychometrika, 23 (3): 187−200. 

Hossain, M.A., & Miah, M.A.M. (2009). Post-harvest losses and technical efficiency of potato storage systems in 
Bangladesh. National Food Policy Capacity Strengthening Programme. Final Report CF # 2/08. 

Huang, T., Li, B., Shen, D., Cao, J. & Mao, B. (2017). Analysis of the grain loss in harvest based on logistic regression. 
Procedia Computer Science, 122, 698−705.  

Jha, S.N., Vishwakarma, R.K., Ahmad, T., Rai, A. & Dixit, A. . (2015). Report on Assessment of Quantitative Harvest 
and Post-Harvest Losses of Major Crops/Commodities in India. ICAR-All India Coordinated Research Project on Post-
Harvest Technology, ICAR-CIPHET 130.. 

Johnson, L. K., Dunning, R. D., Bloom, J. D., Gunter, C. C., Boyette, M. D., & Creamer, N. G. (2018). Estimating on-
farm food loss at the field level: A methodology and applied case study on a North Carolina farm. Resources, 
Conservation and Recycling, 137, 243−250.  

Jöreskog, K.G., & Sörbom, D. (1982). Recent developments in structural equation modeling. Journal of Marketing 
Research. 19(4): 404–416.  

Kader, A. A. (2005.) Increasing food availability by reducing postharvest losses of fresh produce. Acta Horticulture. 
682, 2169−2176.  

Kaminski, J., & Christiansen, L. (2014). Post-harvest loss in sub-Saharan Africa − What do farmers say? Global Food 
Security. 3 (3-4): 149−158.  

Keesling, W. (1972). Maximum likelihood approaches to causal flow analysis. University of Chicago. PhD thesis.  

http://www.fao.org/3/ca6030en/ca6030en.pdf
http://www.fao.org/3/cb1562en/cb1562en.pdf
http://hdl.handle.net/10413/11918
https://www.fao.org/3/ca6412en/ca6412en.pdf


    

62 
 

Khatun, M., Karim, M. R., Khandoker, S., Hossain, T. M., & Hossain, S. (2014). (2014). Post-harvest loss assessment 
of tomato in some selected areas of Bangladesh. International Journal of Business, Social and Scientific Research. 
1(3), 209−218. 

Kikulwe, E. M., Okurut, S., Ajambo, S., Nowakunda, K., Stoian, D. & Naziri, D. (2018). Postharvest losses and their 
determinants: A challenge to creating a sustainable cooking banana value chain in Uganda. Sustainability, 10(7): 
2381. 

Kimenju, S, & De Groote, H. (2010). Economic analysis of alternative maize storage technologies in Kenya. Paper 
presented at the Third Conference of the African Association of Agricultural Economists (AAAE). September 19-
23;Cape Town, South Africa. http://econpapers.repec.org/scripts/search/search.asp?ft=simon+kimenju 

Kitinoja, L., Tokala, V. Y. & Brondy, A. (2018). Challenges and opportunities for improved postharvest loss 
measurements in plant-based food crops. Journal of Postharvest Technology, 6(4): 16-34. 

Kumar, D.K., Basavaraja, H. & Mahajanshetti, S.B. (2006). An economic analysis of post-harvest losses in vegetables  

 
Morris, K.J., Kamarulzaman, N.H. & Morris, K.I. (2019). Small-scale postharvest practices among plantain farmers 
and traders: A potential for reducing losses in rivers state, Nigeria. Scientific African, 4, e00086. 
 
Loh, W.Y. (2011). Classification and regression trees. Wiley interdisciplinary reviews: data mining and knowledge 
discovery, 1(1): 14−23. 
 
Maziku, P. (2019). Determinants for post-harvest losses in maize production for small holder farmers in 
Tanzania. African journal of applied research, 5(1): 1−11. 
 
Mebratie, M.A., Haji, J., Woldetsadik, K., Ayalew, A, & Ambo, E. (2015). Determinants of postharvest banana loss 
in the marketing chain of central Ethiopia. Food Science and Quality Management, 37, 52−63. 
 
Meena, M.S., Kumar, A., Singh, K.M., & Meena, H.R. (2016). Farmers’ attitude towards post-harvest issues of 
horticultural crops. Indian Research Journal of Extension Education, 9(3): 15−19. 
 
Ndiritu, S.W. & Ruhinduka, R.D. (2019). Climate variability and post-harvest food loss abatement technologies: 
evidence from rural Tanzania. Studies in Agricultural Economics, 121(1): 30−40. 

Ngowi, E.R. & Selejio, O. (2019). Post-harvest loss and adoption of improved post-harvest storage technologies by 
smallholder maize farmers in Tanzania. African Journal of Economic Review, 7(1), 249−267. 

Paneru, R.B., Paudel, G. & Thapa, R.B. (2018). Determinants of post-harvest maize losses by pests in mid hills of 
Nepal. International Journal of Agriculture, Environment and Bioresearch, 3(1): 110−118. 

Pregibon, D. (1980). Goodness of link tests for generalized linear models. Journal of the Royal Statistical Society 
Series C: Applied Statistics, 29(1): 15−24. 

Qu, X., Kojima, D., Nishihara, Y., Wu, L. & Ando, M. (2020). Impact of rice harvest loss by mechanization or 
outsourcing: Comparison of specialized and part-time farmers. Agricultural Economics/Zemědělská 
Ekonomika, 66(12): 542−549. 

Shee, A., Mayanja, S., Simba, E., Stathers, T., Bechoff, A. & Bennett, B. (2019). Determinants of postharvest losses 
along smallholder producers maize and Sweet potato value chains: an ordered Probit analysis. Food Security, 11, 
1101−1120. 

Smith, T.M.F. (1991). Post-stratification. The Statistician, 40(3): 315−23.  

http://econpapers.repec.org/scripts/search/search.asp?ft=simon+kimenju


    

63 
 

Tadesse, B., Bakala, F. & Mariam, L.W. (2018). Assessment of postharvest loss along potato value chain: the case of 
Sheka Zone, southwest Ethiopia. Agriculture & Food Security, 7, 1-14. 

Wineman, A., Njagi, T., Anderson, C.L., Reynolds, T.W., Alia, D.Y., Wainaina, P, Ayieko, M.W. et al. (2020). A case 
of mistaken identity? Measuring rates of improved seed adoption in Tanzania using DNA fingerprinting. Journal of 
Agricultural Economics, 71(3): 719-741. 

Wossen, T., Abdoulaye, T., Alene, A., Nguimkeu, P., Feleke, S., Rabbi, I. Y., Manyong, V. et al. (2019). Estimating 
the productivity impacts of technology adoption in the presence of misclassification. American Journal of 
Agricultural Economics, 101(1): 1-16. 

Xue, L., Liu, G., Parfitt, J., Liu, X., Van Herpen, E., Stenmarck, Å., O’Connor, C. et al. (2017). Missing food, missing 
data? A critical review of global food losses and food waste data. Environmental Science & Technology, 51(12): 6618-
6633. 

 

 
 
 
 



    

64 
 

Annex I: Overview of the papers screened for the literature review on determining factors 
Table 16: Overview of the papers screened for the literature review on determining factors 

Country Food group Crops Stages of the 
supply chain 

Operations 
covered in the 
stages  

Type of model Full Reference 

Papers that estimate food loss drivers on sub-national food loss survey data 

Bangladesh Vegetable Tomato Farm, trade Post-harvest  Khatun, M., Karim, M. R., Khandoker, S., Hossain, T. M., & Hossain, 
S. (2014). Postharvest loss assessment of tomato in some selected 
areas of Bangladesh. International Journal of Business, Social and 
Scientific Research, 1(3): 209−218.  

Bangladesh Vegetable Tomato Farm, trade Post-harvest  Khatun, M. & Rahman, M. (2020). Postharvest loss assessment of 
tomato in selected locations of Bangladesh. Bangladesh Journal of 
Agricultural Research, 45, 43-52.  

Bangladesh Grains Rice and 
wheat 

On-farm Harvest, post-
harvest, storage, 
transportation 

  Begum, E.A., Hossain, M. & Papanagiotou, E. (2012). Economic 
analysis of post-harvest losses in food-grains for strengthening food 
security in northern regions of Bangladesh. International Journal of 
Applied Research in Business Administration and Economics,. 1(3): 
56−65. 
 

India Grains Rice and 
wheat 

On-farm Post-harvest  Basavaraja, H., Mahajanashetti, S.B. & Udagatti, N.C. (2007) 
Economic analysis of post-harvest losses in food grains in India: a 
case study of Karnataka. Agricultural Economics Research 
Association (India), 20(1): 176−126. 
 

India Roots and tubers Potatoes and 
onions 

On-farm, 
middleman 

Post-havest    
 

Nepal Various Rice, wheat, 
maize, 
potato, 
mustard, 
cabbage and 
lentil 

On-farm Post-harvest   Arun, G.C. and Ghimire, K. (2019). Estimating post-harvest loss at the 
farm level to enhance food security: A case of Nepal. International 
Journal of Agriculture Environment and Food Sciences, 3(3): 
127−136.  
 

Nepal Grains Maize On-farm Post-harvest, 
storage 

 Paneru, R.B., Paudel, G. & Thapa, R.B. (2018). Determinants of post-
harvest maize losses by pests in mid hills of Nepal. International 
Journal of Agriculture, Environment and Bioresearch, 3(1): 110−118. 
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Kenya Grains Maize On-farm Storage  De Groote, H., Kimenju, S. C., Likhayo, P., Kanampiu, F., Tefera, T., 
& Hellin, J. (2013). Effectiveness of hermetic systems in controlling 
maize storage pests in Kenya. Journal of Stored Products 
Research, 53: 27-36. 

Ghana Vegetables Tomato On-farm Post-harvest  Aidoo R., Rita, A. & Mensah, O.J. (2014). Determinants of 
postharvest losses in tomato production in the Offinso North District 
of Ghana. Journal of Development and Agricultural Economics, 6(8): 
338−344.  
 

Ghana Vegetables Tomato On-farm Post-harvest  Alidu, A-F, Ali, E.B. and Aminu H. (2016). Determinants of post 
harvest losses among tomato farmers in the Navrongo Municipality 
in the upper east region. Journal of Biology, Agriculture and 
Healthcare, 6(12): 14−20. 
 

Ghana Vegetables Tomato On-farm, 
retailers, 
wholesalers 

Post-harvest   Amoako-Adusei, Ruth (2019). Tomato postharvest losses in Ghana: 
an economic analysis. This report is taken from an MSc thesis 
conducted at the Wageningen University and Research, published 
under The HortiFresh Program 

Uganda Grains, Roots 
and tubers 

Maize, sweet 
potato 

On-farm, off-
farm 

Post-harvest   Shee, A., Mayanja, S., Simba, E., Stathers, T., Bechoff, A. & Bennett, 
B. (2019). Determinants of postharvest losses along smallholder 
producers maize and Sweetpotato value chains: an ordered Probit 
analysis., Food Security, 11, 1101−1120. 
 

Uganda Fruits Banana On-farm, 
retail 

Post-harvest  Kikulwe, E. M., Okurut, S., Ajambo, S., Nowakunda, K., Stoian, D. & 
Naziri, D. (2018). Postharvest losses and their determinants: A 
challenge to creating a sustainable cooking banana value chain in 
Uganda. Sustainability, 10(7): 2381. 
 

Ethopia Fruits Banana On-farm, 
wholesale, 
retail 

Post-harvest  Mebratie, M.A., Haji, J., Woldetsadik, K., Ayalew, A, & Ambo, E. 
(2015). Determinants of postharvest banana loss in the marketing 
chain of central Ethiopia. Food Science and Quality 
Management, 37, 52−63. 
 

Ethiopia Cereals Teff On-farm Post-harvest  Amentae, T.K., Tura, E.G., Gebresenbet G. & Ljungberg D. (2016). 
Exploring value chain and post-harvest losses of Teff in Bacho and 
Dawo districts of central Ethiopia. Journal of Stored Products and 
Post-harvest Research, 7(1): 11−28. 
 

Ethopia Roots and tubers Potato On-farm, 
local trader, 

Post-harvest  Tadesse, B., Bakala, F. & Mariam, L.W. (2018). Assessment of 
postharvest loss along potato value chain: the case of Sheka Zone, 
southwest Ethiopia. Agriculture & Food Security, 7, 1-14. 
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wholesaler, 
retailer 

 

Ethopia Roots and tubers Onion  On-farm, 
traders  

Storage  Emana, B., Afari-Sefa, V., Kebede, D., Nenguwo, N., Ayana, A., & 
Mohammed, H. (2017). Assessment of postharvest losses and 
marketing of onion in Ethiopia. International Journal of Postharvest 
Technology and Innovation, 5(4): 300−319. 

United 
Republic of 
Tanzania 

Grains Maize On-farm Post-harvest  Maziku, P. (2019). Determinants for post-harvest losses in maize 
production for small holder farmers in Tanzania. African Journal of 
Applied Research, 5(1): 1−11. 
 

Nigeria Grains Maize On-farm Post-harvest  Folayan, J.A., Babalola, J.A.& Ilesa, A. (2013). Determinants of post-
harvest losses of maize in Akure North Local Government Area of 
Ondo State, Nigeria. Journal of Sustainable Society, 2(1).  
 

Nigeria Fruits   Fruit 
marketers 

Post-harvest  Busari, A.O., Idris-Adeniyi, K.M., & Lawal, A.O. (2015). Food security 
and post-harvest losses in fruit marketing in Lagos metropolis, 
Nigeria. Discourse Journal of Agriculture and Food Sciences, 3(3): 
52-58. 

Nigeria Roots and tubers Yam On-farm Post-harvest  Adisa, R.S., Adefalu, L.L., Olatinwo, L. ., Balogun, K.S., & 
Ogunmadeko, O. O. (2015). Determinants of post-harvest losses of 
yam among yam farmers in Ekiti State, Nigeria, Bulletin of the 
Institute of Tropical Agriculture, Kyushu University, 38(1): 073-078. 

Nigeria Roots and tubers Yam On-farm Storage  Falola, A., Salami, M.F., Bello, A.A. & Olaoye, T.A. (2017). Effect of 
yam storage techniques usage on farm income in Kwara State, 
Nigeria. Agrosearch, 17(1): 54–65.  
 

Nigeria Fruits Plantain On-farm, 
traders 

Post-harvest  Morris, K.J., Kamarulzaman, N.H. & Morris, K.I. (2019). Small-scale 
postharvest practices among plantain farmers and traders: A 
potential for reducing losses in rivers state, Nigeria. Scientific 
African, 4, e00086. 
 

Nigeria Vegetables Tomato On-farm Post-harvest  Babalola, D.A., Makinde, Y.O., Omonona, B.T., & Oyekanmi, M.O. 
(2010). Determinants of postharvest losses in tomato production: a 
case study of Imeko – Afon local government area of Ogun state. 
Journal of Life and Physical Science, 3(2): 14–18. 
 

Nigeria Vegetables Tomato On-farm Post-harvest  Kuranen-Joko, D.N., & Liambee, D. H. (2017). Determinants of 
Postharvest Losses among Tomato Farmers in Gboko Local 
Governments Area of Benue State. CARD International Journal of 
Agricultural Research and Food Production (IJARFP), 2(4): 27-33.  
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Nigeria Vegetables Tomato On-farm Post-harvest  Ayandiji, A., Adeniyi, O. D., & Omidiji, D. (2011). Determinant post 
harvest losses among tomato farmers in Imeko-Afon local 
government area of Ogun State, Nigeria. Global Journal of Science 
Frontier Research, 11(5): 23-27.  

Malawi Cereals Maize, soya, 
groundnut 

On-farm Aggregated 
post- 
harvest and by 
activity 

 Ambler, K., Brauw, A. & Godlonton, S. (2018). Measuring postharvest 
losses at the farm level in Malawi. Australian Journal of Agricultural 
and Resource Economics, 62 (1): 139−160.  
 

South Africa Vegetables Cabbage and 
spinach, 
tomato 

On-farm Post-harvest  Garikai, M. (2014). Assessment of vegetable postharvest losses 
among smallholder farmers in Umbumbulu area of KwaZulu-Natal 
province. University of KwaZulu-Natal, Pietermaritzburg, South 
Africa Master’s Thesis. http://hdl.handle.net/10413/11918 
 

Bangladesh Roots and 
Tubers 

Potatoes Farm, 
Storage, 
Trade 

Storage  Hossain, M.A., & Miah, M.A.M. (2009). Post-harvest losses and 
technical efficiency of potato storage systems in Bangladesh. 
National Food Policy Capacity Strengthening Programme. Final 
Report CF # 2/08. 
 

China Grains Various On-farm Harvest  Huang, T., Li, B., Shen, D., Cao, J. & Mao, B. (2017). Analysis of the 
grain loss in harvest based on logistic regression. Procedia Computer 
Science, 122, 698−705.  
 

Fiji Islands Vegetables Tomato On-farm Post-harvest  Kumar, S., & Underhill, S. J. (2019). Smallholder farmer perceptions 
of postharvest loss and its determinants in Fijian tomato value 
chains. Horticulturae, 5(4): 74. 

Ghana Roots and 
Tubers 

Yam On-farm Post-harvest  Ansah, I.G.K. & Tetteh, B.K. (2016). Determinants of yam postharvest 
management in the Zabzugu District of Northern Ghana. Advances 
in Agriculture.  
 

Zimbabwe Vegetables Tomato On-farm Post-harvest  Macheka, L., Spelt, E.J., Bakker, E.J., van der Vorst, J.G. & Luning, 
P.A. (2018). Identification of determinants of postharvest losses in 
Zimbabwean tomato supply chains as basis for dedicated 
interventions. Food Control, 87, 135-144. 

India Vegetables Various On-farm Post-harvest  Meena, M.S. & Singh, K. (2009). Farmer’s attitude towards post-
harvest aspects of horticultural crops. Indian Research Journal of 
Extension Education. 9, 15−19. 

Sub-
Saharan 
Africa 

Grains Maize On-farm, 
markets 

Storage  Kaminski, J., & Christiansen, L. (2014). Post-harvest loss in sub-
Saharan Africa − What do farmers say? Global Food Security,. 3 (3-
4): 149−158.  
 

http://hdl.handle.net/10413/11918
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Sri Lanka Vegetables Carrots, 
cabbage and 
leeks 

On-farm Post-harvest  Dharmathilake, N.R.D.S; Rosairo, H.S.R; Ayoni, V.D.N & Herath, R.M. 
(2020). Implications of post-harvest losses and acreage response of 
selected upcountry vegetables from Nuwara-Eliya District in Sri 
Lanka on sustained food security. Journal of Agriculture Sciences, 
15(1)  
 

  

United 
Republic of 
Tanzania 

Grains Maize On-farm Storage  Ngowi, E.R. & Selejio, O. (2019). Post-harvest loss and adoption of 
improved post-harvest storage technologies by smallholder maize 
farmers in Tanzania. African Journal of Economic Review, 7(1): 
249−267. 
 

United 
Republic of 
Tanzania 

Grains Maize On-farm Storage  Ngowi, E.R. & Selejio, O. (2019). Post-harvest loss and 
adoption of improved post-harvest storage technologies by 
smallholder maize farmers in Tanzania. African Journal of 
Economic Review, 7(1), 249−267. 
 

China Grains Rice On-farm Harvest and 
post-harvest 

 Qu, X., Kojima, D., Nishihara, Y., Wu, L. & Ando, M. (2020). Impact of 
rice harvest loss by mechanization or outsourcing: Comparison of 
specialized and part-time farmers. Agricultural 
Economics/Zemědělská Ekonomika, 66(12): 542−549. 
 

Papers that fill food loss data gaps in surveys, apply modelling to reduce costs (smaller sample size) 

Ethopia Cereals Various On-farm 
 

Post-harvest  Hengsdijk, H. & De Boer ,W.J..(2017). Post-harvest management and 
post-harvest losses of cereals in Ethiopia. Food Security, 9, 945–958.  
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Annex II: List of indicators mentioned in the literature as determining 
factors of harvest and post-harvest losses 
Table 17: List of indicators mentioned in the literature as determining factors of harvest and post-
harvest losses 

I) Household/ producer socioeconomic characteristics 

Education 

Education of producer/respondent/HH head (Number of years) 
Secondary education (Dummy variable, 1= if got the secondary education, otherwise 0)  
Age and gender 
Age of HH head/ respondent (Years) 
Sex of household head/gender household heat (1=male, 0= female)/Respondent (male or female) 
Respondent is female (1=yes, 0=no) 
Number of adult males working in the farm 
Number of adult females working in the farm 
Income and access to credit 

Average annual income of the respondents/Total HH income  
Inverse hyperbolic sine of total household asset value 
% of income coming from farming 
Occupation (Dummy variable, =1 if household head's primary occupation is farming, otherwise 0)/Agriculture as a 
primary occupation (Yes=1, No=0) 
Agriculture as a secondary occupation (Yes=1, No=0) 
Having credit access (Yes=1, No=0) 
Communication 

Ownership mobile (Y/N) 
Having internet access (Yes=1, No=0) 
Having electricity access (Yes=1, No=0) 
Source of information 
Family size and type of family 

Family size/Household size (Number of person) 
Type of family dummy [value ‘0’ for joint family and ‘1’ for nuclear family] 
II) Agricultural Activity 
 
Size of the farm and production 

Farm size/Cropping area (ha)/Area of land cultivated (hectare)/area allocated for potato 
Inverse hyperbolic sine of total land area owned (acres) 
Farm number of plots 
Quantity produced/ Total production/Quantity harvested 
Inverse hyperbolic sine of production quantity (kg) 
Inv hyp sine of gross value of agricultural output 
Production per ha 
Land under the crop (%)/ Area allocated for potato 
Farming experience 

Member in the farmer club (proxy for agricultural experience and access to agricultural advice service and other 
services) 
Farming decision taken by the household (Yes=1, No=0) 
Risk score (1-10) (whether respondents generally see themselves as a person who is fully prepared to take risks =10) 
Input and technology 
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Having exclusively rainfed farming (Yes=1, No=0) 
Area under irrigation 

Input usage (cost of improved seed, fertilizer, chemicals, labor etc.) 
Variety used/ Maize variety (Dummy variable, 1= if maize variety is SETO local, otherwise 0)/ Improved variety  
Having access to the extension service 
Number of extension visit per year 
Extension contact (1 = Yes; 0 = No) 

Labour 

Labour dummy which takes the value ‘1’ if the labour availability during harvesting was adequate and value ‘0’, 
otherwise. 
Type of labour used for harvesting (0=family labour, 1= hired labour) 
Number of active labor force 
Pre harvest working days (man days) 
Harvest working days (man days) 
Cooperation/farmer-based organization 

Member of producer organization/Farmer based organization/Group membership 
Membership to cooperative (1 = Yes, 0 = No);  
Input cooperation (1 = Yes, 0 = No);  
Output cooperation (1 = Yes, 0 = No);  
Time of harvesting 

Time of harvest after maturity (days)/Age of fruit at harvest (months) 
Decision to harvest ‘1’ if fruit harvested when mature and ‘0’ otherwise; 
Early harvest (=1 if crop is harvested before first week of September, otherwise 0)  
Criteria to harvest (1 = maturity; 0 = other) 
III) Post-harvest characteristics 

Markets connection and sales 

Area under commercial crops (ha or %) 
Own consumption (%) 
Frequency of sales 
Experience in markets (Years) 
Distance to nearest market (km)/Distance from the farm to the market (km)/Market access (km) 
Time to nearest market 
Sale price / Current prices 
Ready market (1 = Yes, 0 = No);  
Time between harvesting and selling of produce (days)/days fruit spend on the farm (days) 
Days fruit spend in the market before getting to the consumer (days) 
On-farm storage 

Storage facility (Dummy: 1=Yes; 0=otherwise) 
Storage structure 
Type of storage 
Storage dummy which takes the value ‘1’ if the storage facility was adequate and value ‘0’  
Storage period (month)/ days of storage 
Specific for cold storage 

Electricity supply (h) 
Outside temperature (°C) 
Relative humidity in the cool room (%) 
Pre-cooling time (h) 
Good bag used (%) 
Capacity utilization (%) 
Inversion of bag (No.) 
Maturity of stored potato (%) 
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Storage period (month) 
Bag per stack (No.) 
Floor type (wood = 1, other = 0) 
Age of cold storage (year) 
Packaging, transportation, threshing 

Packaging dummy which takes the value ‘1’ if the packaging is suitable and value ‘0’ otherwise 
Packaging (yes/ no) 
Transportation dummy which takes the value ‘1’ if transport facility was adequate and value ‘0’ otherwise 
Ownership of transport 
Number of livestock owned by HH (Number) 
Threshing machine dummy which takes the value ‘1’ if availability of threshing machine during harvesting was 
adequate, ‘0’, otherwise. 
IV) Weather/Climate 

Weather conditions at harvesting 

Weather condition (Dummy: 1=Good; 0= otherwise) 
Rainfall dummy which takes the value ‘1’ if rainfall occur during harvest and value ‘0’ otherwise 
Weather dummy which takes the value ‘1’ if the weather during harvesting was favorable and value ‘0’, otherwise. 
Month of harvest and geographic region (control for differences in rainfall patterns during the time of harvest and 
general geographic characteristics) 
Precipitation preharvest (rainfall prior to harvest should be indicative of overall production, proxy for humidity 
patterns) 
Precipitation during harvest and post-harvest (direct cause of losses) 
Agro-ecological conditions, geographical conditions 

Agro-ecological conditions (proxied with AEZ indicator variables) 
Altitude (=1 if <800 masl and 800-1500 masl = 0)  
District (dummy Rakai=1, otherwise =0) 
Location and accessibility 
Use of weather information 

Use of past weather experiences (Yes=1, No=0) 
Use of weather information (Yes=1, No=0)  
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Annex III: Technical notes on statistical procedures  
Brief description of exploratory factor procedures used 
The Exploratory Factor Analysis was applied to identify environmental factors that appeared to be 
relevant for the level of post-harvest losses. To do this, the Principal Factor Method was used to analyse 
the correlation matrix. This method seeks to find the fewest factors that can account for the common 
variance (correlation) of a set of variables.  

To select the number of factors that seem relevant, the so called “Kaiser criterion” was used, which selects 
the factors with an eigenvalue greater than one. Additionally, the cumulative proportion of the variance 
explained by the factors is used as a complimentary criterion. These are expressed as a percentage, with 
the proportion showing the factor´s contribution towards explaining the variance. To choose the factors 
to be considered, the criterion established a cutoff point at more than 80 percent of the cumulative 
proportion of the variance. 

To make the results obtained from EFA more reliable, and to better understand the resulting factors, the 
Varimax rotation method was used.  

Finally, estimated factor coefficients were used to generate the factor scores used as environmental 
variables in the GSEM model. 

 

Annex IV: Additional country examples on the modelling approach 
tested for sub-sampling losses in the farm or household surveys 
 

Models obtained GSARS Zimbabwe − maize: 
 

The classification established as post-stratification to generate a percent loss estimate was used as a 
predictor variable in a Poisson model. The output from this model is shown in Table 3. 

This is a parsimonious model under which only one classification variable is used as the predictor, but it 
includes three independent variables in the classification criteria. To test the use of a Poisson model 
(natural log as link function) and the specification of the model with respect to the independent 
classification variable, the corresponding linktest is shown in Table 19. This test indicates that the specified 
on-farm loss model shows very good functionality for estimating the mean percent losses, where the 
linear prediction L  ̂presents a significant coefficient equal to 1, meaning a perfect correspondence (1:1) 
to the observed percent losses (p = 0.034), and the square predicted L ̂̂ 2 has no predictive power (p = 1), 
with an estimated coefficient equal to zero. This is the ideal situation for model-based predictions. The 
estimated percentage loss of maize using a Poisson model is also 8.66 percent, but with a smaller standard 
error of 0.429 percent (95 percent% CI: 7.8, 9.5). This improved variance can be attributed to the loss 
classifications identified in the post-stratification procedure of the CART method, and shows an efficiency 
increase of 30.3 percent from the sample-based standard error to the model-based standard error. 

The sampling-based estimate for the harvest and post-harvest percent loss of maize in Zimbabwe using 
the GSARS farm loss survey gives a mean on-farm loss of 4.0 percent with a standard error of 0.404 percent 
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(95 percent CI: 3.2, 4.8). The same data-driven procedure was used to improve the mean estimate, where 
a regression tree was built to generate post-stratification criteria, as shown in Figure 18. The regression 
tree selected four cutting points on three variables, namely the quantity of maize produced 
(q_production), age of the household (b4), and whether the household received any assistance from the 
government (f3). This tree arrives at five terminal nodes used as stratification to generate a Poisson 
model; the output was omitted. 

This model fits properly. It shows a good linear relationship for the predicted value L  ̂with a coefficient 
estimate equal to 1 (p = 0.018), as shown in Table 19. The square predicted L ̂̂ 2 has no predictive power 
(p = 1), and the estimated coefficient is zero, so the model passes the linktest showed in Table 19 The 
estimated percent loss of maize using the model is 4.0 percent, but with a smaller standard error of 0.259 
percent (95 percent CI: 3.5, 4.5). This represents a high efficiency increase of 59.1 percent. 

 

Figure 18: CART classification Zimbabwe GSARS 

 

Table 18: Model specification tests, results from the linktests Zimbabwe GSARS 

b) Zimbabwe GSARS 

Predictor Coefficient Std. Err. P 

𝐿
^

 1.000 0.424 0.018 

𝐿
^ 2

 0.000 0.073 1.000 
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Models obtained for the Nigeria LSMS-ISA surveys 
 

Nigeria GHS 2015/16 −maize 

The sampling-based estimate for post-harvest percentage losses of maize in Nigeria for the LSMS-ISA 
dataset provides a mean food loss of 10.1 percent with a standard error of 0.978 percent (95 percent CI: 
8.2, 12.0). Data-driven procedures to improve the mean estimate generated a regression tree with seven 
cutting points on five variables: agro-ecological zone (hhgv_ssa_aez09), area planted (imp_area_planted), 
harvested quantity (imp_harv_qty), harvest length in days on average (harv_lenght), and plot elevation 
(plplotgv_elevation). This tree, shown in Figure 19, arrives at eight terminal nodes used as stratification 
to generate a Poisson model. The linktest for this model shows similar results (Table 20), with a 
correspondence of 1:1 between the observed percentage of post-harvest food loss and the linear 
prediction L ,̂ but a coefficient not statistically different from zero (p = 0.119), and the square predicted 
L ̂̂ 2 remains without predictive power, showing a zero coefficient (p = 1). 

The estimated percentage loss of maize using this model is also 10.1 percent, but with a smaller standard 
error of 0.8.23 percent (95 percent CI: 8.5, 11.7). This represents an efficiency increase of 29.1 percent.  

Figure 19: CART classification Nigeria GHS 2015/16 

 

 

Table 19: Model specification tests, results from the linktests, Nigeria GHS 2015/16 

d) Nigeria GHS 15/16 

Predictor Coefficient Std. Err. P 
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𝐿
^

 1.000 0.641 0.119 

𝐿
^ 2

 0.000 0.134 1.000 

 

 

Results obtained for the GSARS farm loss surveys in Zimbabwe  
GSARS Zimbabwe − maize: 

The same application of sample reduction on the food loss model was used for maize for the Zimbabwe 
survey dataset. In Table 21, a sample reduction of 50 percent achieved using model estimates, obtaining 
a relative efficiency of 9.4 percent with respect to the whole sample survey estimate. 

Table 20: Estimates, standard errors and relative efficiencies for sub-sample – Zimbabwe GSARS 

Sample 
reduction 

Survey-based loss estimate 
Post-stratification loss estimate 

(model-based) Model relative 
efficiency 

𝐿𝑠
^

 𝜎𝑠
^

 𝐿𝑚
^

 𝜎𝑚
^

 

0% 3.98 0.404 3.98 0.259 59.1% 

10% 4.09 0.450 4.09 0.277 53.1% 

20% 3.85 0.429 3.85 0.298 45.7% 

30% 3.80 0.447 3.80 0.310 41.1% 

40% 3.87 0.508 3.87 0.347 26.3% 

50% 3.99 0.572 3.99 0.384 9.4% 

 

The use of imputed missing values in reduced samples as an option is presented in Table 22. The same 
concern is applicable here regarding standard error reductions with imputed values, which implies a 
greater risk of an increased probability of missing confidence interval estimates.  

Table 21: Estimates, standard errors and relative efficiencies for imputed sub-samples – Zimbabwe 
GSARS 

Sample 
reduction 

Survey - based loss estimate Estimates with model-based 
imputation 

𝐿𝑠
^

 𝜎𝑠
^

 𝐿𝑖
^

 𝜎𝑖
^

 

0% 3.98 0.404 3.98 0.404 

10% 4.09 0.450 
 

3.85 0.352 
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20% 3.85 0.429 3.96 0.356 

30% 3.80 0.447 3.92 0.356 

40% 3.87 0.508 3.81 0.323 

50% 3.99 0.572 3.98 0.345 

 

 

Results obtained for the Living Standard Measurement Studies in Nigeria 
Nigeria GHS 2015/16 − maize 

Sample-based and model-based estimates for post-harvest loss percentage for maize on the LSMS-ISA 
dataset is shown in Table 23.  

Table 22 Estimates, standard errors and relative efficiencies for sub-sample – Nigeria GHS15/16 

Sample reduction 

Survey-based loss 
estimate 

Post-stratification loss 
estimate (model-based) Model relative 

efficiency 

𝐿𝑠
^

 𝜎𝑠
^

 𝐿𝑚
^

 𝜎𝑚
^

 

0% 10.10 0.978 10.10 0.823 29.1% 

10% 9.85 1.024 9.85 0.866 21.6% 

20% 10.17 1.122 10.17 0.959 3.8% 

30% 9.76 1.111 9.76 0.954 4.7% 

40% 8.75 0.997 8.75 0.869 21.0% 

50% 9.36 1.154 9.36 1.018 -8.5% 

 

It the case of Nigeria, compared to Malawi (previously shown), the gains in the standard error by using 
the food loss model are more relevant, as at least a similar relative efficiency with a sample reduction of 
20-30 per cent is achieved. Table 24 shows survey and model-based estimates using imputed missing 
values on the reduced part of the sample. 

Table 23: Estimates, standard errors and relative efficiencies for imputed sub-sample – Nigeria 
GHS15/16 

Sample reduction 

Survey-based loss 
estimate 

Estimates with model-based 
imputation 

𝐿𝑠
^

 𝜎𝑠
^

 𝐿𝑖
^

 𝜎𝑖
^

 

0% 10.10 0.978 10.10 0.978 

10% 9.85 1.024 9.39 0.877 
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20% 10.17 1.122 9.26 0.852 

30% 9.76 1.111 9.58 0.835 

40% 8.75 0.997 9.49 0.781 

50% 9.36 1.154 10.12 0.773 

 

Based on the results, model-based estimates using imputation procedures are not recommended for 
improving loss estimates because of the risk derived from artificial error reduction. 

 

Annex V: General structural estimation model: estimation of the food 
loss model for Nigeria 

Environmental factors can determine production and change from year to year by introducing external 
sources of variation not related to common determinants considered.  

1.- Environmental Factors: Exploratory Factor Analysis was used to identify environmental factors among 
all observed environmental variables. The EFA first output for environmental variables recorded for 
Nigeria LSMS-ISA in the two Integrated Household Surveys is as follows.  

Figure 20: Exploratory Factor Analysis, Environmental Factors, Nigeria 

 

For this output, the Kaiser criterion indicates a selection of four common factors, representing a 
cumulative variance of 85.14 percent of the total variance present in the 15 variables included. Factor 
loadings and unique variances (uniqueness) for this EFA is, as follows: 
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Figure 21: Selection of main factors as by Kaiser criterion 

 

Three environmental variables were excluded due to uniqueness > 0.5; these variables showed a poor 
contribution to the main environmental factors to be considered in the model. The second EFA obtained 
12 environmental variables. 

Figure 22: The second EFA obtained with reduced number of environmental variables 

 

For this output, the Kaiser criterion indicates a selection of four common factors, representing a 
cumulative variance of 95.19 percent of the total variance present in the 12 variables included. 

The Varimax rotated eigenvalues representing the variance for each factors are, as follows: 
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Figure 23: Varimax rotated eigenvalues, GSEM Nigeria 

 

Rotated factor loadings for the Nigeria environmental factors are, as follows: 

Table 24: Rotated factor loadings for the Nigeria environmental factors, Nigeria 

Variable f1 f2 f3 f4 Uniqueness 

Annual mean temperature (degC * 10) 0.0344 0.0356 0.9669 -0.078 0.0566 
Mean temperature of wettest quarter (degC * 10) -0.0126 0.044 0.9583 -0.1034 0.0689 
Annual precipitation (mm) 0.9288 0.024 0.1377 -0.1422 0.0976 
Precipitation of wettest month (mm) 0.92 0.0155 -0.1172 -0.0905 0.1315 
Precipitation of wettest quarter 0.9463 -0.0036 -0.0332 -0.0878 0.0956 
Nutrient availability 0.6021 0.4908 0.1631 -0.2255 0.3191 
Nutrient retention capacity 0.4754 0.6164 0.1797 -0.1886 0.3262 
Rooting conditions -0.1278 0.1671 -0.1163 0.9139 0.1069 
Excess salts -0.0316 0.9367 0.0158 0.2028 0.0802 
Toxicity -0.0418 0.9392 0.0157 0.2036 0.0744 
Workability (constraining field management) -0.1632 0.157 -0.0922 0.9115 0.1094 
Avg 12-month total rainfall(mm) for Jan-Dec 0.8302 -0.0358 0.0374 -0.0897 0.3001 

 

For the interpretation of latent factors, all loadings over 0.6 or below -0.6 are green. Factor 1 includes five 
observed variables: 

• hhgv_af_bio_12 = Annual precipitation (mm) 
• hhgv_af_bio_13 = Precipitation of wettest month (mm) 
• hhgv_af_bio_16 = Precipitation of wettest quarter 
• hhgv_sq1 = Nutrient availability 
• hhgv_h_in_tot = Avg 12-month total rainfall(mm) for Jan-Dec 

These variables are precipitation indicators descriptors of precipitation patterns including nutrients 
availability, so factor 1 is called “Precipitation”. Factor 2 includes four observed variables: 

• hhgv_sq2 = Nutrient retention capacity 
• hhgv_sq4 = Oxygen availability to roots 
• hhgv_sq5 = Excess salts 
• hhgv_sq6 = Toxicity 
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These variables are soil physical and chemical characteristics, so factor 2 is called “Soil salt & toxicity”. 
Factor 3 includes two variables: 

• hhgv_af_bio_1 = Annual mean temperature (degC * 10) 
• hhgv_af_bio_8 = Mean temperature of wettest quarter (degC * 10) 

These are annual temperature variables, so factor 3 is called “Temperature”. Finally, factor 4 includes the 
last two variables: 

• hhgv_sq3 = Rooting conditions 
• hhgv_sq7 = Workability (constraining field management) 

These variables represent rooting conditions of soil and the workability, so factor 4 is called “Soil physical 
conditions”. 

 

3.− GSEM Estimation: A path diagramme for linear relationships between determinants of crop 
production and food losses for Nigeria is shown in Figure 24. 

Figure 24 Path diagramme for linear relationships GSME Nigeria 
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In this representation, response variables are crop production and post-harvest losses, both modelled 
using a Poisson regression (loglink function and distributional family Poisson). In the bottom left of the 
diagramme, there is a box named “sample”, which is a dummy variable and represents changes between 
survey rounds (year-to-year), and with linear effects on three of the four environmental latent factors 
(LF1 to LF3) and direct effects on the log of crop production and the log post-harvest losses in percent 
(green arrows). Environmental latent factors receive an arrow act like regression responses, each with 
their specific error term i. At the top of the diagramme are two social variables, age of the head of the 
household and a dummy variable, indicating if their gender is female. Circling at the medium left are other 
determinants, including the use of improved seed, the agro-ecological zones, the field elevation and the 
latent variable related to soil physical conditions (LF4). Blue arrows represent the linear contribution of 
determinants on the log crop production, and red arrows represent linear contributions on the log post-
harvest losses in percent. The model results are obtained using sampling weights for bias correction and 
standard error adjustment. The coefficient estimates for the full model, are presented in Table 26. 

Table 25: Coefficient estimates for the full model, GSME Nigeria 

Equation Coef. Robust    
Std. Err. z P LB 95% UB 95% 

Crop production       
LF1 Precipitation 0.070 0.081 0.870 0.387 -0.089 0.229 
LF2 Soil salt & toxicity 0.051 0.028 1.820 0.069 -0.004 0.107 
LF3 Temperature -0.415 0.118 -3.520 0.000 -0.646 -0.184 
LF4 Soil physical conditions -0.138 0.035 -3.960 0.000 -0.206 -0.069 
age of household 0.005 0.003 1.980 0.048 0.000 0.010 
Household female (yes) 0.114 0.186 0.610 0.542 -0.252 0.479 
improved seed (yes) -0.275 0.090 -3.040 0.002 -0.452 -0.098 
Elevation (m) -0.001 0.001 -2.660 0.008 -0.002 0.000 
Tropic-warm/semiarid -0.771 0.345 -2.230 0.026 -1.447 -0.094 
Tropic-warm/subhumid -1.056 0.298 -3.550 0.000 -1.639 -0.473 
Tropic-cold/subhumid -1.223 0.454 -2.690 0.007 -2.114 -0.332 
sample (year) -2.391 0.087 -27.490 0.000 -2.562 -2.221 
_cons 8.545 0.342 24.970 0.000 7.875 9.216 
ln(area planted) 1 (exposure)         
Post-harvest loss in percent      
Crop production -0.0002 0.0001 -1.580 0.115 0.000 0.000 
LF1 Precipitation -0.030 0.131 -0.230 0.818 -0.286 0.226 
LF2 Soil salt & toxicity -0.540 0.233 -2.320 0.021 -0.996 -0.083 
LF3 Temperature 0.095 0.085 1.120 0.264 -0.072 0.261 
age of household 0.009 0.008 1.250 0.213 -0.005 0.024 
Household female (yes) 0.449 0.287 1.560 0.118 -0.114 1.011 
sample (year) -1.114 0.318 -3.510 0.000 -1.737 -0.491 
_cons 0.279 0.433 0.650 0.519 -0.569 1.127 
LF1 Precipitation       
sample (year) 0.066 0.046 1.440 0.149 -0.024 0.155 
_cons -0.075 0.030 -2.500 0.013 -0.134 -0.016 
LF2 Soil salt & toxicity       
sample (year) 0.003 0.044 0.070 0.943 -0.083 0.090 
_cons 0.025 0.027 0.920 0.359 -0.029 0.079 
LF3 Temperature       
sample (year) -0.109 0.055 -1.990 0.046 -0.216 -0.002 
_cons 0.000 0.029 -0.010 0.991 -0.057 0.056 
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var(e.f1) 1.003 0.033   0.940 1.070 
var(e.f2) 1.176 0.414   0.589 2.345 
var(e.f3) 1.157 0.077     1.016 1.318 

  

The first equation is a Poisson regression to model crop production under which the size of the planted 
area is used as offset variable. Estimated coefficients show that precipitation had a positive effect and soil 
salt and toxicity and temperature had negative effects on crop production. Female household heads 
showed a negative effect on crop production. The use of improved seeds and lower terrain elevation are 
related to less crop production. There is a significant reduction in crop production for tropic-
warm/semiarid, tropic-warm/subhumid and tropic-cold/subhumid agro-ecological zones with respect to 
the tropic-warm/humid agro-ecological zone. 

The second equation is a Poisson regression to model post-harvest loss in percent in which a higher crop 
production is weakly related to a lower post-harvest loss. Soil salt and toxicity is related to less post-
harvest losses. In the second survey (sampling round), there is a significant reduction in post-harvest 
losses. Only the fifth equation shows a reduction in temperature for the survey for the second round. At 
the bottom of coefficient estimation output, estimates of residual variance for linear regression equations 
representing the effects of sample year on the three environmental variables are given. 

After the model reduction procedure, the crop production equation began with 12 paths, and in the final 
model, it contained only 10 paths. Precipitation and household gender were eliminated. The post-harvest 
losses in percent began with seven paths and ended with four paths; LF1 Precipitation, LF3 Temperature 
and the age of the household head were eliminated. Only the equation for the effect of sample year on 
LF3 Temperature remained in the model. The coefficient estimates for the final reduced model are 
presented in Table 27. 

Table 26: The coefficient estimates for the final reduced model , GSME Nigeria 

Equation Coef. Robust     
Std. Err. z P LB 95% UB 95% 

Crop production       
LF2 Soil salt and toxicity 0.050 0.028 1.780 0.075 -0.005 0.104 
LF3 Temperature -0.460 0.111 -4.120 0.000 -0.678 -0.241 
LF4 Soil physical conditions -0.130 0.033 -3.990 0.000 -0.194 -0.066 
age of household 0.005 0.003 1.990 0.047 0.000 0.011 
improved seed (yes) -0.273 0.091 -3.000 0.003 -0.451 -0.095 
Elevation (m) -0.002 0.001 -3.000 0.003 -0.003 -0.001 
Tropic-warm/semiarid -0.9598 0.2738 -3.510 0.000 -1.4965 -0.4231 
Tropic-warm/subhumid -1.223 0.251 -4.870 0.000 -1.715 -0.731 
Tropic-cold/subhumid -1.356 0.421 -3.220 0.001 -2.182 -0.530 
sample (year) -2.390 0.087 -27.380 0.000 -2.561 -2.219 
_cons 8.746 0.279 31.330 0.000 8.198 9.293 
ln(area planted) 1 (exposure)         
Post-harvest loss in percent      
Crop production 0.000 0.000 -1.760 0.078 0.000 0.000 
LF2 Soil salt & toxicity -0.518 0.231 -2.250 0.025 -0.970 -0.066 
Household female (yes) 0.514 0.304 1.690 0.090 -0.081 1.110 
sample (year) -1.166 0.312 -3.740 0.000 -1.778 -0.555 
_cons 0.794 0.173 4.600 0.000 0.456 1.133 
LF3 Temperature       
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sample (year) -0.109 0.055 -1.990 0.046 -0.216 -0.002 
_cons 0.000 0.029 -0.010 0.991 -0.057 0.056 
var(e.f5) 1.157 0.077     1.016 1.318 

 

This reduced model has the same interpretation of estimated direct effects on response variables 
obtained from the full model. The fitted path diagram for the reduced model, including coefficients for 
the direct effects, is presented in Figure 25. 

Figure 25: Path diagramme for the reduced model, GSME Nigeria 

 

 

There are no significant indirect effects on crop production or on post-harvest losses.  

The mean estimate of post-harvest loss for the overall period, based on a model with two possibly distant 
survey rounds, is as follows: 

Figure 26: Mean estimate of post-harvest loss for the overall period, Nigeria 
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An estimated 1.39 percent of maize crop production becomes post-harvest loss. The post-harvest loss 
estimates for each survey round, are as follows: 

Figure 27: The post-harvest loss estimates for each survey round. Nigeria 

 

The post-harvest losses were 2.33 percent in the first survey round, and it showed a significant reduction 
to 0.73 percent in the second survey round. 

Finally, the linktest to validate the use of the GSEM model for estimation propose, showed the followings: 

Figure 28: Linktest for the final GSEM model, Nigeria 

 

The model passed this test correctly, as the squared prediction _hatsq has a non-significant coefficient 
and it is close to zero. The linearity in the prediction _hat is significantly positive, indicating that the model 
is a good instrument for post-harvest loss estimation. 

 


